{"title":"基于高级强化学习算法的长期COVID患者心血管疾病预测的规范分析决策系统。","authors":"Diana Juliet S, Banumathi J","doi":"10.1177/08953996251335115","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years Covid-19 impact is causing unprecedented difficulties worldwide, affecting lifestyle choices. The post-pandemic era has made this even more critical.COVID-19 triggers widespread inflammation throughout the body, potentially causing damage to the heart and other vital organs. Mortality data from COVID-19 clearly show that the highest death rates occur in individuals with chronic conditions, such as diabetes, pneumonia, cardiovascular disease (CVD), and acute renal failure.CVD is a particular concern in the medical field. The early detection of CVD remains a significant challenge, as early identification can prompt lifestyle changes and ensure appropriate medical interventions when needed. Individuals with CVD are at an increased risk for heart attack and other serious complications. There is a limited amount of data available to study the effects of COVID-19 on CVD in COVID-19 patients. However, it is essential to monitor these patients to ensure full recovery without complications. The proposed system is specifically designed for individuals experiencing prolonged symptoms following a COVID-19 infection, commonly referred to as long COVID patients. This research introduces a novel Decision-Making System for CVD Prediction, utilizing an improved dual-attention residual bi-directional gated recurrent neural network unit (DA-ResBiGRU) algorithm with AI-Biruni Earth Radius Optimization (ABER). The proposed system employs state-of-the-art predictive algorithms and real-time monitoring to assess individual patient risk profiles accurately. This research addresses the critical need for personalized risk assessment in patients with long-term COVID, aiming to assist healthcare providers in timely and targeted interventions. By analyzing intricate patterns in patient data, the decision-making system enhances the precision of CVD prediction. Additionally, the system's adaptive nature allows it to continuously learn from new patient data, ensuring that its predictions remain up-to-date and reflective of the evolving understanding of long COVID-related cardiovascular risks. The simulation findings of this research highlight the potential of the proposed algorithm to be integrated into clinical decision-making, helping healthcare professionals identify high-risk patients more effectively. The proposed method outperformed existing algorithms, such as Deep Neural Network (DNN), Long short-term memory (LSTM), Inception-v3, Xception, and MobileNetV2, achieving the highest accuracy (97.88%), sensitivity (95.50%), specificity (94.29%), precision (96.68%), and F-measure (95.85%).</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251335115"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescriptive analytics decision-making system for cardiovascular disease prediction in long COVID patients using advanced reinforcement learning algorithms.\",\"authors\":\"Diana Juliet S, Banumathi J\",\"doi\":\"10.1177/08953996251335115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years Covid-19 impact is causing unprecedented difficulties worldwide, affecting lifestyle choices. The post-pandemic era has made this even more critical.COVID-19 triggers widespread inflammation throughout the body, potentially causing damage to the heart and other vital organs. Mortality data from COVID-19 clearly show that the highest death rates occur in individuals with chronic conditions, such as diabetes, pneumonia, cardiovascular disease (CVD), and acute renal failure.CVD is a particular concern in the medical field. The early detection of CVD remains a significant challenge, as early identification can prompt lifestyle changes and ensure appropriate medical interventions when needed. Individuals with CVD are at an increased risk for heart attack and other serious complications. There is a limited amount of data available to study the effects of COVID-19 on CVD in COVID-19 patients. However, it is essential to monitor these patients to ensure full recovery without complications. The proposed system is specifically designed for individuals experiencing prolonged symptoms following a COVID-19 infection, commonly referred to as long COVID patients. This research introduces a novel Decision-Making System for CVD Prediction, utilizing an improved dual-attention residual bi-directional gated recurrent neural network unit (DA-ResBiGRU) algorithm with AI-Biruni Earth Radius Optimization (ABER). The proposed system employs state-of-the-art predictive algorithms and real-time monitoring to assess individual patient risk profiles accurately. This research addresses the critical need for personalized risk assessment in patients with long-term COVID, aiming to assist healthcare providers in timely and targeted interventions. By analyzing intricate patterns in patient data, the decision-making system enhances the precision of CVD prediction. Additionally, the system's adaptive nature allows it to continuously learn from new patient data, ensuring that its predictions remain up-to-date and reflective of the evolving understanding of long COVID-related cardiovascular risks. The simulation findings of this research highlight the potential of the proposed algorithm to be integrated into clinical decision-making, helping healthcare professionals identify high-risk patients more effectively. The proposed method outperformed existing algorithms, such as Deep Neural Network (DNN), Long short-term memory (LSTM), Inception-v3, Xception, and MobileNetV2, achieving the highest accuracy (97.88%), sensitivity (95.50%), specificity (94.29%), precision (96.68%), and F-measure (95.85%).</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251335115\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251335115\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251335115","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Prescriptive analytics decision-making system for cardiovascular disease prediction in long COVID patients using advanced reinforcement learning algorithms.
In recent years Covid-19 impact is causing unprecedented difficulties worldwide, affecting lifestyle choices. The post-pandemic era has made this even more critical.COVID-19 triggers widespread inflammation throughout the body, potentially causing damage to the heart and other vital organs. Mortality data from COVID-19 clearly show that the highest death rates occur in individuals with chronic conditions, such as diabetes, pneumonia, cardiovascular disease (CVD), and acute renal failure.CVD is a particular concern in the medical field. The early detection of CVD remains a significant challenge, as early identification can prompt lifestyle changes and ensure appropriate medical interventions when needed. Individuals with CVD are at an increased risk for heart attack and other serious complications. There is a limited amount of data available to study the effects of COVID-19 on CVD in COVID-19 patients. However, it is essential to monitor these patients to ensure full recovery without complications. The proposed system is specifically designed for individuals experiencing prolonged symptoms following a COVID-19 infection, commonly referred to as long COVID patients. This research introduces a novel Decision-Making System for CVD Prediction, utilizing an improved dual-attention residual bi-directional gated recurrent neural network unit (DA-ResBiGRU) algorithm with AI-Biruni Earth Radius Optimization (ABER). The proposed system employs state-of-the-art predictive algorithms and real-time monitoring to assess individual patient risk profiles accurately. This research addresses the critical need for personalized risk assessment in patients with long-term COVID, aiming to assist healthcare providers in timely and targeted interventions. By analyzing intricate patterns in patient data, the decision-making system enhances the precision of CVD prediction. Additionally, the system's adaptive nature allows it to continuously learn from new patient data, ensuring that its predictions remain up-to-date and reflective of the evolving understanding of long COVID-related cardiovascular risks. The simulation findings of this research highlight the potential of the proposed algorithm to be integrated into clinical decision-making, helping healthcare professionals identify high-risk patients more effectively. The proposed method outperformed existing algorithms, such as Deep Neural Network (DNN), Long short-term memory (LSTM), Inception-v3, Xception, and MobileNetV2, achieving the highest accuracy (97.88%), sensitivity (95.50%), specificity (94.29%), precision (96.68%), and F-measure (95.85%).
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes