基于学习的超慢kV切换多材料CBCT图像重建。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Chenchen Ma, Jiongtao Zhu, Xin Zhang, Han Cui, Yuhang Tan, Jinchuan Guo, Hairong Zheng, Dong Liang, Ting Su, Yi Sun, Yongshuai Ge
{"title":"基于学习的超慢kV切换多材料CBCT图像重建。","authors":"Chenchen Ma, Jiongtao Zhu, Xin Zhang, Han Cui, Yuhang Tan, Jinchuan Guo, Hairong Zheng, Dong Liang, Ting Su, Yi Sun, Yongshuai Ge","doi":"10.1177/08953996251331790","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveThe purpose of this study is to perform multiple (<math><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251331790"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.\",\"authors\":\"Chenchen Ma, Jiongtao Zhu, Xin Zhang, Han Cui, Yuhang Tan, Jinchuan Guo, Hairong Zheng, Dong Liang, Ting Su, Yi Sun, Yongshuai Ge\",\"doi\":\"10.1177/08953996251331790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ObjectiveThe purpose of this study is to perform multiple (<math><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251331790\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251331790\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251331790","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

目的利用深度学习方法对基于超慢kV开关的光谱锥束CT (CBCT)成像进行多重(≥3)次物质分解。在这项工作中,开发了一种称为SkV-Net的新型深度神经网络,用于从使用超慢kV开关技术获得的超稀疏光谱CBCT投影中重建多个材料密度图像。其中,SkV-Net采用U-Net的主干结构,采用多头轴向注意模块扩大感知场。它以每kV重构的CT图像为输入,根据基材图像的能量依赖衰减特性自动输出基材图像。通过数值模拟和实验研究对该方法的性能进行了评价。结果表明,SkV-Net能够从5个kV转换光谱投影的跨度中生成4种不同的物质密度图像,即脂肪、肌肉、骨骼和碘。物理实验表明,碘和CaCl2的分解误差小于6%,表明该方法在鉴别材料方面具有较高的精度。eskv - net为使用超慢kV开关方案实现的光谱CBCT成像系统提供了一种很有前途的多材料分解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.

ObjectiveThe purpose of this study is to perform multiple (3) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl2 are less than 6%, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信