Multiple semantic X-ray medical image retrieval using efficient feature vector extracted by FPN.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Lijia Zhi, Shaoyong Duan, Shaomin Zhang
{"title":"Multiple semantic X-ray medical image retrieval using efficient feature vector extracted by FPN.","authors":"Lijia Zhi, Shaoyong Duan, Shaomin Zhang","doi":"10.3233/XST-240069","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Content-based medical image retrieval (CBMIR) has become an important part of computer-aided diagnostics (CAD) systems. The complex medical semantic information inherent in medical images is the most difficult part to improve the accuracy of image retrieval. Highly expressive feature vectors play a crucial role in the search process. In this paper, we propose an effective deep convolutional neural network (CNN) model to extract concise feature vectors for multiple semantic X-ray medical image retrieval.</p><p><strong>Methods: </strong>We build a feature pyramid based CNN model with ResNet50V2 backbone to extract multi-level semantic information. And we use the well-known public multiple semantic annotated X-ray medical image data set IRMA to train and test the proposed model.</p><p><strong>Results: </strong>Our method achieves an IRMA error of 32.2, which is the best score compared to the existing literature on this dataset.</p><p><strong>Conclusions: </strong>The proposed CNN model can effectively extract multi-level semantic information from X-ray medical images. The concise feature vectors can improve the retrieval accuracy of multi-semantic and unevenly distributed X-ray medical images.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1297-1313"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-240069","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Content-based medical image retrieval (CBMIR) has become an important part of computer-aided diagnostics (CAD) systems. The complex medical semantic information inherent in medical images is the most difficult part to improve the accuracy of image retrieval. Highly expressive feature vectors play a crucial role in the search process. In this paper, we propose an effective deep convolutional neural network (CNN) model to extract concise feature vectors for multiple semantic X-ray medical image retrieval.

Methods: We build a feature pyramid based CNN model with ResNet50V2 backbone to extract multi-level semantic information. And we use the well-known public multiple semantic annotated X-ray medical image data set IRMA to train and test the proposed model.

Results: Our method achieves an IRMA error of 32.2, which is the best score compared to the existing literature on this dataset.

Conclusions: The proposed CNN model can effectively extract multi-level semantic information from X-ray medical images. The concise feature vectors can improve the retrieval accuracy of multi-semantic and unevenly distributed X-ray medical images.

利用 FPN 提取的高效特征向量进行多语义 X 射线医学图像检索。
目的:基于内容的医学图像检索(CBMIR)已成为计算机辅助诊断(CAD)系统的重要组成部分。医学图像中固有的复杂医学语义信息是提高图像检索准确性的最大难点。高表现力的特征向量在检索过程中起着至关重要的作用。本文提出了一种有效的深度卷积神经网络(CNN)模型,以提取简洁的特征向量,用于多语义 X 射线医学图像检索:方法:我们以 ResNet50V2 为骨干建立了一个基于特征金字塔的 CNN 模型,以提取多层次语义信息。方法:我们以 ResNet50V2 为骨干建立了基于特征金字塔的 CNN 模型,提取多层次语义信息,并使用著名的公共多语义注释 X 射线医学图像数据集 IRMA 来训练和测试所提出的模型:结果:与现有文献相比,我们的方法在 IRMA 数据集上取得了 32.2 的最佳成绩:结论:所提出的 CNN 模型能有效地从 X 光医学图像中提取多层次语义信息。结论:所提出的 CNN 模型能有效地从 X 光医学图像中提取多层次语义信息,简洁的特征向量能提高多语义和分布不均的 X 光医学图像的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信