Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Zihan Deng, Zhisheng Wang, Legeng Lin, Demin Jiang, Junning Cui, Shunli Wang
{"title":"Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction.","authors":"Zihan Deng, Zhisheng Wang, Legeng Lin, Demin Jiang, Junning Cui, Shunli Wang","doi":"10.3233/XST-240128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recent studies have explored layered correction strategies, employing a slice-by-slice approach to mitigate the prominent limited-view artifacts present in reconstructed images from high-pitch helical CT scans. However, challenges persist in determining the angles, quantity, and sequencing of slices.</p><p><strong>Objective: </strong>This study aims to explore the optimal slicing method for high pitch helical scanning 3D reconstruction. We investigate the impact of slicing angle, quantity, order, and model on correction effectiveness, aiming to offer valuable insights for the clinical application of deep learning methods.</p><p><strong>Methods: </strong>In this study, we constructed and developed a series of data-driven slice correction strategies for 3D high pitch helical CT images using slice theory, and conducted extensive experiments by adjusting the order, increasing the number, and replacing the model.</p><p><strong>Results: </strong>The experimental results indicate that indiscriminately augmenting the number of correction directions does not significantly enhance the quality of 3D reconstruction. Instead, optimal reconstruction outcomes are attained by aligning the final corrected slice direction with the observation direction.</p><p><strong>Conclusions: </strong>The data-driven slicing correction strategy can effectively solve the problem of artifacts in high pitch helical scanning. Increasing the number of slices does not significantly improve the quality of the reconstruction results, ensuring that the final correction angle is consistent with the observation angle to achieve the best reconstruction quality.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"1535-1552"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-240128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recent studies have explored layered correction strategies, employing a slice-by-slice approach to mitigate the prominent limited-view artifacts present in reconstructed images from high-pitch helical CT scans. However, challenges persist in determining the angles, quantity, and sequencing of slices.

Objective: This study aims to explore the optimal slicing method for high pitch helical scanning 3D reconstruction. We investigate the impact of slicing angle, quantity, order, and model on correction effectiveness, aiming to offer valuable insights for the clinical application of deep learning methods.

Methods: In this study, we constructed and developed a series of data-driven slice correction strategies for 3D high pitch helical CT images using slice theory, and conducted extensive experiments by adjusting the order, increasing the number, and replacing the model.

Results: The experimental results indicate that indiscriminately augmenting the number of correction directions does not significantly enhance the quality of 3D reconstruction. Instead, optimal reconstruction outcomes are attained by aligning the final corrected slice direction with the observation direction.

Conclusions: The data-driven slicing correction strategy can effectively solve the problem of artifacts in high pitch helical scanning. Increasing the number of slices does not significantly improve the quality of the reconstruction results, ensuring that the final correction angle is consistent with the observation angle to achieve the best reconstruction quality.

基于深度学习的多视角切片校正策略在高螺距螺旋 CT 重建中的有效性研究。
背景:最近的研究已经探索了分层校正策略,采用逐层方法来减轻高频螺旋CT扫描重建图像中存在的突出的有限视野伪影。然而,在确定切片的角度、数量和顺序方面仍然存在挑战。目的:探讨高螺距螺旋扫描三维重建的最佳切片方法。我们研究了切片角度、数量、顺序和模型对矫正效果的影响,旨在为深度学习方法的临床应用提供有价值的见解。方法:本研究利用切片理论构建并开发了一系列数据驱动的三维高间距螺旋CT图像切片校正策略,并通过调整顺序、增加数量、替换模型等方式进行了大量实验。结果:实验结果表明,不加选择地增加校正方向的数量并不能显著提高三维重建的质量。相反,通过将最终校正的切片方向与观测方向对齐,可以获得最佳的重建结果。结论:数据驱动的切片校正策略能有效解决高音高螺旋扫描中的伪影问题。增加切片数量并不能显著提高重建结果的质量,要保证最终的校正角度与观测角度一致,以达到最佳的重建质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信