Multiple energy X-ray imaging of metal oxide particles inside gingival tissues.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Jarrod Cortez, Ignacio Romero, Jason Ngo, Md Sayed Tanveer Azam, Chuang Niu, Cássio Luiz Coutinho Almeida-da-Silva, Leticia Ferreira Cabido, David M Ojcius, Wei-Chun Chin, Ge Wang, Changqing Li
{"title":"Multiple energy X-ray imaging of metal oxide particles inside gingival tissues.","authors":"Jarrod Cortez, Ignacio Romero, Jason Ngo, Md Sayed Tanveer Azam, Chuang Niu, Cássio Luiz Coutinho Almeida-da-Silva, Leticia Ferreira Cabido, David M Ojcius, Wei-Chun Chin, Ge Wang, Changqing Li","doi":"10.3233/XST-230175","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontal disease affects over 50% of the global population and is characterized by gingivitis as the initial sign. One dental health issue that may contribute to the development of periodontal disease is foreign body gingivitis (FBG), which can result from exposure to some kinds of foreign metal particles from dental products or food.</p><p><strong>Objective: </strong>We design a novel, portable, affordable, multispectral X-ray and fluorescence optical microscopic imaging system dedicated to detecting and differentiating metal oxide particles in dental pathological tissues. A novel denoising algorithm is applied. We verify the feasibility and optimize the performance of the imaging system with numerical simulations.</p><p><strong>Methods: </strong>The designed imaging system has a focused X-ray tube with tunable energy spectra and thin scintillator coupled with an optical microscope as detector. A simulated soft tissue phantom is embedded with 2-micron thick metal oxide discs as the imaged object. GATE software is used to optimize the systematic parameters such as energy bandwidth and X-ray photon number. We have also applied a novel denoising method, Noise2Sim with a two-layer UNet structure, to improve the simulated image quality.</p><p><strong>Results: </strong>The use of an X-ray source operating with an energy bandwidth of 5 keV, X-ray photon number of 108, and an X-ray detector with a 0.5 micrometer pixel size in a 100 by 100-pixel array allowed for the detection of particles as small as 0.5 micrometer. With the Noise2Sim algorithm, the CNR has improved substantially. A typical example is that the Aluminum (Al) target's CNR is improved from 6.78 to 9.72 for the case of 108 X-ray photons with the Chromium (Cr) source of 5 keV bandwidth.</p><p><strong>Conclusions: </strong>Different metal oxide particles were differentiated using Contrast-to-Noise ratio (CNR) by utilizing four different X-ray spectra.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"87-103"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Periodontal disease affects over 50% of the global population and is characterized by gingivitis as the initial sign. One dental health issue that may contribute to the development of periodontal disease is foreign body gingivitis (FBG), which can result from exposure to some kinds of foreign metal particles from dental products or food.

Objective: We design a novel, portable, affordable, multispectral X-ray and fluorescence optical microscopic imaging system dedicated to detecting and differentiating metal oxide particles in dental pathological tissues. A novel denoising algorithm is applied. We verify the feasibility and optimize the performance of the imaging system with numerical simulations.

Methods: The designed imaging system has a focused X-ray tube with tunable energy spectra and thin scintillator coupled with an optical microscope as detector. A simulated soft tissue phantom is embedded with 2-micron thick metal oxide discs as the imaged object. GATE software is used to optimize the systematic parameters such as energy bandwidth and X-ray photon number. We have also applied a novel denoising method, Noise2Sim with a two-layer UNet structure, to improve the simulated image quality.

Results: The use of an X-ray source operating with an energy bandwidth of 5 keV, X-ray photon number of 108, and an X-ray detector with a 0.5 micrometer pixel size in a 100 by 100-pixel array allowed for the detection of particles as small as 0.5 micrometer. With the Noise2Sim algorithm, the CNR has improved substantially. A typical example is that the Aluminum (Al) target's CNR is improved from 6.78 to 9.72 for the case of 108 X-ray photons with the Chromium (Cr) source of 5 keV bandwidth.

Conclusions: Different metal oxide particles were differentiated using Contrast-to-Noise ratio (CNR) by utilizing four different X-ray spectra.

牙龈组织内金属氧化物颗粒的多能x线成像。
背景:牙周病影响全球50%以上的人口,其特征是牙龈炎为初始体征。可能导致牙周病的一个牙齿健康问题是异物牙龈炎(FBG),这可能是由于暴露于牙科产品或食物中的某些外来金属颗粒造成的。目的:设计一种新型、便携、经济、多光谱x射线和荧光光学显微成像系统,用于检测和鉴别口腔病理组织中的金属氧化物颗粒。采用了一种新的去噪算法。通过数值模拟验证了该成像系统的可行性,并对其性能进行了优化。方法:设计的成像系统采用能谱可调的聚焦x射线管和薄闪烁体,外加光学显微镜作为探测器。模拟软组织幻影嵌入2微米厚的金属氧化物盘作为成像对象。利用GATE软件对能量带宽、x射线光子数等系统参数进行优化。我们还应用了一种新颖的降噪方法Noise2Sim,它具有双层UNet结构,以提高模拟图像的质量。结果:使用能量带宽为5 keV的x射线源,x射线光子数为108,x射线探测器在100 × 100像素阵列中具有0.5微米像素大小,允许检测小至0.5微米的粒子。使用Noise2Sim算法,CNR有了很大的提高。一个典型的例子是,在108个x射线光子的情况下,使用带宽为5 keV的铬源,铝(Al)靶的CNR从6.78提高到9.72。结论:利用4种不同的x射线光谱,利用噪声比(CNR)对不同的金属氧化物颗粒进行区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信