Rajagopal Kumar, Fadi Al-Turjman, L N B Srinivas, M Braveen, Jothilakshmi Ramakrishnan
{"title":"ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India.","authors":"Rajagopal Kumar, Fadi Al-Turjman, L N B Srinivas, M Braveen, Jothilakshmi Ramakrishnan","doi":"10.1007/s00521-021-06412-w","DOIUrl":"10.1007/s00521-021-06412-w","url":null,"abstract":"<p><p>Corona Virus Disease 2019 (COVID-19) is a continuing extensive incident globally affecting several million people's health and sometimes leading to death. The outbreak prediction and making cautious steps is the only way to prevent the spread of COVID-19. This paper presents an Adaptive Neuro-fuzzy Inference System (ANFIS)-based machine learning technique to predict the possible outbreak in India. The proposed ANFIS-based prediction system tracks the growth of epidemic based on the previous data sets fetched from cloud computing. The proposed ANFIS technique predicts the epidemic peak and COVID-19 infected cases through the cloud data sets. The ANFIS is chosen for this study as it has both numerical and linguistic knowledge, and also has ability to classify data and identify patterns. The proposed technique not only predicts the outbreak but also tracks the disease and suggests a measurable policy to manage the COVID-19 epidemic. The obtained prediction shows that the proposed technique very effectively tracks the growth of the COVID-19 epidemic. The result shows the growth of infection rate decreases at end of 2020 and also has delay epidemic peak by 40-60 days. The prediction result using the proposed ANFIS technique shows a low Mean Square Error (MSE) of 1.184 × 10<sup>-3</sup> with an accuracy of 86%. The study provides important information for public health providers and the government to control the COVID-19 epidemic.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 10","pages":"7207-7220"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9141726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Q networks-based optimization of emergency resource scheduling for urban public health events.","authors":"Xianli Zhao, Guixin Wang","doi":"10.1007/s00521-022-07696-2","DOIUrl":"https://doi.org/10.1007/s00521-022-07696-2","url":null,"abstract":"<p><p>In today's severe situation of the global new crown virus raging, there are still efficiency problems in emergency resource scheduling, and there are still deficiencies in rescue standards. For the happiness and well-being of people's lives, adhering to the principle of a community with a shared future for mankind, the emergency resource scheduling system for urban public health emergencies needs to be improved and perfected. This paper mainly studies the optimization model of urban emergency resource scheduling, which uses the deep reinforcement learning algorithm to build the emergency resource distribution system framework, and uses the Deep Q Network path planning algorithm to optimize the system, to achieve the purpose of optimizing and upgrading the efficient scheduling of emergency resources in the city. Finally, through simulation experiments, it is concluded that the deep learning algorithm studied is helpful to the emergency resource scheduling optimization system. However, with the gradual development of deep learning, some of its disadvantages are becoming increasingly obvious. An obvious flaw is that building a deep learning-based model generally requires a lot of CPU computing resources, making the cost too high.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 12","pages":"8823-8832"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9401203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9285301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Celard, E L Iglesias, J M Sorribes-Fdez, R Romero, A Seara Vieira, L Borrajo
{"title":"A survey on deep learning applied to medical images: from simple artificial neural networks to generative models.","authors":"P Celard, E L Iglesias, J M Sorribes-Fdez, R Romero, A Seara Vieira, L Borrajo","doi":"10.1007/s00521-022-07953-4","DOIUrl":"10.1007/s00521-022-07953-4","url":null,"abstract":"<p><p>Deep learning techniques, in particular generative models, have taken on great importance in medical image analysis. This paper surveys fundamental deep learning concepts related to medical image generation. It provides concise overviews of studies which use some of the latest state-of-the-art models from last years applied to medical images of different injured body areas or organs that have a disease associated with (e.g., brain tumor and COVID-19 lungs pneumonia). The motivation for this study is to offer a comprehensive overview of artificial neural networks (NNs) and deep generative models in medical imaging, so more groups and authors that are not familiar with deep learning take into consideration its use in medicine works. We review the use of generative models, such as generative adversarial networks and variational autoencoders, as techniques to achieve semantic segmentation, data augmentation, and better classification algorithms, among other purposes. In addition, a collection of widely used public medical datasets containing magnetic resonance (MR) images, computed tomography (CT) scans, and common pictures is presented. Finally, we feature a summary of the current state of generative models in medical image including key features, current challenges, and future research paths.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 3","pages":"2291-2323"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.","authors":"Mehmet Altinoz, O Tolga Altinoz","doi":"10.1007/s00521-022-07921-y","DOIUrl":"https://doi.org/10.1007/s00521-022-07921-y","url":null,"abstract":"<p><p>This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 5","pages":"3865-3882"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10632381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction.","authors":"C Ashwini, V Sellam","doi":"10.1007/s00521-023-08289-3","DOIUrl":"https://doi.org/10.1007/s00521-023-08289-3","url":null,"abstract":"<p><p>Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 15","pages":"11125-11139"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9439692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning from pseudo-lesion: a self-supervised framework for COVID-19 diagnosis.","authors":"Zhongliang Li, Xuechen Li, Zhihao Jin, Linlin Shen","doi":"10.1007/s00521-023-08259-9","DOIUrl":"https://doi.org/10.1007/s00521-023-08259-9","url":null,"abstract":"<p><p>The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019, and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks. However, they usually require a large number of annotated data for training. Inspired by ground glass opacity, a common finding in COIVD-19 patient's CT scans, we proposed in this paper a novel self-supervised pretraining method based on pseudo-lesion generation and restoration for COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical model, to generate lesion-like patterns, which were then randomly pasted to the lung regions of normal CT images to generate pseudo-COVID-19 images. The pairs of normal and pseudo-COVID-19 images were then used to train an encoder-decoder architecture-based U-Net for image restoration, which does not require any labeled data. The pretrained encoder was then fine-tuned using labeled data for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of CT images were employed for evaluation. Comprehensive experimental results demonstrated that the proposed self-supervised learning approach could extract better feature representation for COVID-19 diagnosis, and the accuracy of the proposed method outperformed the supervised model pretrained on large-scale images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset, respectively.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 15","pages":"10717-10731"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9439693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19.","authors":"Binrong Wu, Lin Wang, Rui Tao, Yu-Rong Zeng","doi":"10.1007/s00521-022-07967-y","DOIUrl":"10.1007/s00521-022-07967-y","url":null,"abstract":"<p><p>This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-related search engine data is introduced for tourism demand forecasting. A new method named the composition leading search index-variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT interpretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers (TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output, including the importance ranking of different input variables and attention analysis at different time steps. Besides, the validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19 epidemic.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 7","pages":"5437-5463"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638251/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10700857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Res-CovNet: an internet of medical health things driven COVID-19 framework using transfer learning.","authors":"Mangena Venu Madhavan, Aditya Khamparia, Deepak Gupta, Sagar Pande, Prayag Tiwari, M Shamim Hossain","doi":"10.1007/s00521-021-06171-8","DOIUrl":"10.1007/s00521-021-06171-8","url":null,"abstract":"<p><p>Major countries are globally facing difficult situations due to this pandemic disease, COVID-19. There are high chances of getting false positives and false negatives identifying the COVID-19 symptoms through existing medical practices such as PCR (polymerase chain reaction) and RT-PCR (reverse transcription-polymerase chain reaction). It might lead to a community spread of the disease. The alternative of these tests can be CT (Computer Tomography) imaging or X-rays of the lungs to identify the patient with COVID-19 symptoms more accurately. Furthermore, by using feasible and usable technology to automate the identification of COVID-19, the facilities can be improved. This notion became the basic framework, Res-CovNet, of the implemented methodology, a hybrid methodology to bring different platforms into a single platform. This basic framework is incorporated into IoMT based framework, a web-based service to identify and classify various forms of pneumonia or COVID-19 utilizing chest X-ray images. For the front end, the.NET framework along with C# language was utilized, MongoDB was utilized for the storage aspect, Res-CovNet was utilized for the processing aspect. Deep learning combined with the notion forms a comprehensive implementation of the framework, Res-CovNet, to classify the COVID-19 affected patients from pneumonia-affected patients as both lung imaging looks similar to the naked eye. The implemented framework, Res-CovNet, developed with the technique, transfer learning in which ResNet-50 used as a pre-trained model and then extended with classification layers. The work implemented using the data of X-ray images collected from the various trustable sources that include cases such as normal, bacterial pneumonia, viral pneumonia, and COVID-19, with the overall size of the data is about 5856. The accuracy of the model implemented is about 98.4% in identifying COVID-19 against the normal cases. The accuracy of the model is about 96.2% in the case of identifying COVID-19 against all other cases, as mentioned.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 19","pages":"13907-13920"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00521-021-06171-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9526793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iyad Abu Doush, Mohammed A Awadallah, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Ammar Kamal Abasi, Zaid Abdi Alkareem Alyasseri
{"title":"Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.","authors":"Iyad Abu Doush, Mohammed A Awadallah, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Ammar Kamal Abasi, Zaid Abdi Alkareem Alyasseri","doi":"10.1007/s00521-023-08577-y","DOIUrl":"10.1007/s00521-023-08577-y","url":null,"abstract":"<p><p>The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 21","pages":"15923-15941"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing COVID-19 tracking apps with human activity recognition using a deep convolutional neural network and HAR-images.","authors":"Gianni D'Angelo, Francesco Palmieri","doi":"10.1007/s00521-021-05913-y","DOIUrl":"10.1007/s00521-021-05913-y","url":null,"abstract":"<p><p>With the emergence of COVID-19, mobile health applications have increasingly become crucial in contact tracing, information dissemination, and pandemic control in general. Apps warn users if they have been close to an infected person for sufficient time, and therefore potentially at risk. The distance measurement accuracy heavily affects the probability estimation of being infected. Most of these applications make use of the electromagnetic field produced by Bluetooth Low Energy technology to estimate the distance. Nevertheless, radio interference derived from numerous factors, such as crowding, obstacles, and user activity can lead to wrong distance estimation, and, in turn, to wrong decisions. Besides, most of the social distance-keeping criteria recognized worldwide plan to keep a different distance based on the activity of the person and on the surrounding environment. In this study, in order to enhance the performance of the COVID-19 tracking apps, a human activity classifier based on Convolutional Deep Neural Network is provided. In particular, the raw data coming from the accelerometer sensor of a smartphone are arranged to form an image including several channels (HAR-Image), which is used as fingerprints of the in-progress activity that can be used as an additional input by tracking applications. Experimental results, obtained by analyzing real data, have shown that the HAR-Images are effective features for human activity recognition. Indeed, the results on the k-fold cross-validation and obtained by using a real dataset achieved an accuracy very close to 100%.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 19","pages":"13861-13877"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9879440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}