Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mehmet Altinoz, O Tolga Altinoz
{"title":"Multiobjective problem modeling of the capacitated vehicle routing problem with urgency in a pandemic period.","authors":"Mehmet Altinoz,&nbsp;O Tolga Altinoz","doi":"10.1007/s00521-022-07921-y","DOIUrl":null,"url":null,"abstract":"<p><p>This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9568933/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07921-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

This research is based on the capacitated vehicle routing problem with urgency where each vertex corresponds to a medical facility with a urgency level and the traveling vehicle could be contaminated. This contamination is defined as the infectiousness rate, which is defined for each vertex and each vehicle. At each visited vertex, this rate for the vehicle will be increased. Therefore time-total distance it is desired to react to vertex as fast as possible- and infectiousness rate are main issues in the problem. This problem is solved with multiobjective optimization algorithms in this research. As a multiobjective problem, two objectives are defined for this model: the time and the infectiousness, and will be solved using multiobjective optimization algorithms which are nondominated sorting genetic algorithm (NSGAII), grid-based evolutionary algorithm GrEA, hypervolume estimation algorithm HypE, strength Pareto evolutionary algorithm shift-based density estimation SPEA2-SDE, and reference points-based evolutionary algorithm.

Abstract Image

Abstract Image

Abstract Image

大流行时期有能力紧急车辆路径问题的多目标问题建模。
本研究基于紧急情况下的有能力车辆路径问题,其中每个顶点对应一个具有紧急级别的医疗设施,并且行进的车辆可能受到污染。这种污染被定义为传染率,它被定义为每个顶点和每个车辆。在每个访问的顶点,车辆的这个速率将增加。因此,对顶点作出反应的时间-总距离和传染率是问题的主要问题。本研究采用多目标优化算法解决这一问题。作为一个多目标问题,该模型定义了时间和传染性两个目标,并将使用非支配排序遗传算法(NSGAII)、基于网格的进化算法GrEA、超大体积估计算法HypE、强度Pareto进化算法、基于位移的密度估计SPEA2-SDE和基于参考点的进化算法进行求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信