{"title":"伪病变学习:COVID-19诊断的自监督框架","authors":"Zhongliang Li, Xuechen Li, Zhihao Jin, Linlin Shen","doi":"10.1007/s00521-023-08259-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019, and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks. However, they usually require a large number of annotated data for training. Inspired by ground glass opacity, a common finding in COIVD-19 patient's CT scans, we proposed in this paper a novel self-supervised pretraining method based on pseudo-lesion generation and restoration for COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical model, to generate lesion-like patterns, which were then randomly pasted to the lung regions of normal CT images to generate pseudo-COVID-19 images. The pairs of normal and pseudo-COVID-19 images were then used to train an encoder-decoder architecture-based U-Net for image restoration, which does not require any labeled data. The pretrained encoder was then fine-tuned using labeled data for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of CT images were employed for evaluation. Comprehensive experimental results demonstrated that the proposed self-supervised learning approach could extract better feature representation for COVID-19 diagnosis, and the accuracy of the proposed method outperformed the supervised model pretrained on large-scale images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset, respectively.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Learning from pseudo-lesion: a self-supervised framework for COVID-19 diagnosis.\",\"authors\":\"Zhongliang Li, Xuechen Li, Zhihao Jin, Linlin Shen\",\"doi\":\"10.1007/s00521-023-08259-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019, and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks. However, they usually require a large number of annotated data for training. Inspired by ground glass opacity, a common finding in COIVD-19 patient's CT scans, we proposed in this paper a novel self-supervised pretraining method based on pseudo-lesion generation and restoration for COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical model, to generate lesion-like patterns, which were then randomly pasted to the lung regions of normal CT images to generate pseudo-COVID-19 images. The pairs of normal and pseudo-COVID-19 images were then used to train an encoder-decoder architecture-based U-Net for image restoration, which does not require any labeled data. The pretrained encoder was then fine-tuned using labeled data for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of CT images were employed for evaluation. Comprehensive experimental results demonstrated that the proposed self-supervised learning approach could extract better feature representation for COVID-19 diagnosis, and the accuracy of the proposed method outperformed the supervised model pretrained on large-scale images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset, respectively.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10038387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08259-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08259-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning from pseudo-lesion: a self-supervised framework for COVID-19 diagnosis.
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019, and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks. However, they usually require a large number of annotated data for training. Inspired by ground glass opacity, a common finding in COIVD-19 patient's CT scans, we proposed in this paper a novel self-supervised pretraining method based on pseudo-lesion generation and restoration for COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical model, to generate lesion-like patterns, which were then randomly pasted to the lung regions of normal CT images to generate pseudo-COVID-19 images. The pairs of normal and pseudo-COVID-19 images were then used to train an encoder-decoder architecture-based U-Net for image restoration, which does not require any labeled data. The pretrained encoder was then fine-tuned using labeled data for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of CT images were employed for evaluation. Comprehensive experimental results demonstrated that the proposed self-supervised learning approach could extract better feature representation for COVID-19 diagnosis, and the accuracy of the proposed method outperformed the supervised model pretrained on large-scale images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset, respectively.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.