{"title":"Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19.","authors":"Binrong Wu, Lin Wang, Rui Tao, Yu-Rong Zeng","doi":"10.1007/s00521-022-07967-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-related search engine data is introduced for tourism demand forecasting. A new method named the composition leading search index-variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT interpretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers (TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output, including the importance ranking of different input variables and attention analysis at different time steps. Besides, the validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19 epidemic.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07967-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-related search engine data is introduced for tourism demand forecasting. A new method named the composition leading search index-variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT interpretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers (TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output, including the importance ranking of different input variables and attention analysis at different time steps. Besides, the validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19 epidemic.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.