Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2022-11-04 DOI:10.1007/s00521-022-07967-y
Binrong Wu, Lin Wang, Rui Tao, Yu-Rong Zeng
{"title":"Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19.","authors":"Binrong Wu, Lin Wang, Rui Tao, Yu-Rong Zeng","doi":"10.1007/s00521-022-07967-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-related search engine data is introduced for tourism demand forecasting. A new method named the composition leading search index-variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT interpretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers (TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output, including the importance ranking of different input variables and attention analysis at different time steps. Besides, the validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19 epidemic.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07967-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baidu index, and weather data. For the first time, epidemic-related search engine data is introduced for tourism demand forecasting. A new method named the composition leading search index-variational mode decomposition is proposed to process search engine data. Meanwhile, to overcome the problem of insufficient interpretability of existing tourism demand forecasting, a new model of DE-TFT interpretable tourism demand forecasting is proposed in this study, in which the hyperparameters of temporal fusion transformers (TFT) are optimized intelligently and efficiently based on the differential evolution algorithm. TFT is an attention-based deep learning model that combines high-performance forecasting with interpretable analysis of temporal dynamics, displaying excellent performance in forecasting research. The TFT model produces an interpretable tourism demand forecast output, including the importance ranking of different input variables and attention analysis at different time steps. Besides, the validity of the proposed forecasting framework is verified based on three cases. Interpretable experimental results show that the epidemic-related search engine data can well reflect the concerns of tourists about tourism during the COVID-19 epidemic.

Abstract Image

Abstract Image

Abstract Image

在 COVID-19 的影响下,利用多变量时间序列进行可解释的旅游数量预测。
本研究利用多元时间序列数据,特别是历史旅游量数据、COVID-19 数据、百度指数和天气数据,提出了一个新颖的可解释框架,用于预测 COVID-19 影响下中国九寨沟、黄山和四姑娘山的日旅游量。首次引入与疫情相关的搜索引擎数据用于旅游需求预测。提出了一种名为 "领先搜索指数构成-变模分解 "的新方法来处理搜索引擎数据。同时,为了克服现有旅游需求预测可解释性不足的问题,本研究提出了一种新的 DE-TFT 可解释旅游需求预测模型,其中基于微分进化算法对时空融合变换器(TFT)的超参数进行了智能、高效的优化。TFT 是一种基于注意力的深度学习模型,它将高性能预测与可解释的时间动态分析相结合,在预测研究中表现出卓越的性能。TFT 模型产生了可解释的旅游需求预测输出,包括不同输入变量的重要性排序和不同时间步的注意力分析。此外,基于三个案例验证了所提出的预测框架的有效性。可解释的实验结果表明,与疫情相关的搜索引擎数据能很好地反映 COVID-19 疫情期间游客对旅游的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信