Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data.

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Essam H Houssein, Mosa E Hosney, Waleed M Mohamed, Abdelmgeid A Ali, Eman M G Younis
{"title":"Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data.","authors":"Essam H Houssein,&nbsp;Mosa E Hosney,&nbsp;Waleed M Mohamed,&nbsp;Abdelmgeid A Ali,&nbsp;Eman M G Younis","doi":"10.1007/s00521-022-07916-9","DOIUrl":null,"url":null,"abstract":"<p><p>Feature selection (FS) is one of the basic data preprocessing steps in data mining and machine learning. It is used to reduce feature size and increase model generalization. In addition to minimizing feature dimensionality, it also enhances classification accuracy and reduces model complexity, which are essential in several applications. Traditional methods for feature selection often fail in the optimal global solution due to the large search space. Many hybrid techniques have been proposed depending on merging several search strategies which have been used individually as a solution to the FS problem. This study proposes a modified hunger games search algorithm (mHGS), for solving optimization and FS problems. The main advantages of the proposed mHGS are to resolve the following drawbacks that have been raised in the original HGS; (1) avoiding the local search, (2) solving the problem of premature convergence, and (3) balancing between the exploitation and exploration phases. The mHGS has been evaluated by using the IEEE Congress on Evolutionary Computation 2020 (CEC'20) for optimization test and ten medical and chemical datasets. The data have dimensions up to 20000 features or more. The results of the proposed algorithm have been compared to a variety of well-known optimization methods, including improved multi-operator differential evolution algorithm (IMODE), gravitational search algorithm, grey wolf optimization, Harris Hawks optimization, whale optimization algorithm, slime mould algorithm and hunger search games search. The experimental results suggest that the proposed mHGS can generate effective search results without increasing the computational cost and improving the convergence speed. It has also improved the SVM classification performance.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628476/pdf/","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-07916-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 18

Abstract

Feature selection (FS) is one of the basic data preprocessing steps in data mining and machine learning. It is used to reduce feature size and increase model generalization. In addition to minimizing feature dimensionality, it also enhances classification accuracy and reduces model complexity, which are essential in several applications. Traditional methods for feature selection often fail in the optimal global solution due to the large search space. Many hybrid techniques have been proposed depending on merging several search strategies which have been used individually as a solution to the FS problem. This study proposes a modified hunger games search algorithm (mHGS), for solving optimization and FS problems. The main advantages of the proposed mHGS are to resolve the following drawbacks that have been raised in the original HGS; (1) avoiding the local search, (2) solving the problem of premature convergence, and (3) balancing between the exploitation and exploration phases. The mHGS has been evaluated by using the IEEE Congress on Evolutionary Computation 2020 (CEC'20) for optimization test and ten medical and chemical datasets. The data have dimensions up to 20000 features or more. The results of the proposed algorithm have been compared to a variety of well-known optimization methods, including improved multi-operator differential evolution algorithm (IMODE), gravitational search algorithm, grey wolf optimization, Harris Hawks optimization, whale optimization algorithm, slime mould algorithm and hunger search games search. The experimental results suggest that the proposed mHGS can generate effective search results without increasing the computational cost and improving the convergence speed. It has also improved the SVM classification performance.

Abstract Image

Abstract Image

Abstract Image

基于模糊的饥饿游戏搜索算法在医疗数据中的全局优化和特征选择。
特征选择(FS)是数据挖掘和机器学习中基本的数据预处理步骤之一。它用于减小特征大小和提高模型泛化。除了最小化特征维度外,它还提高了分类精度和降低了模型复杂性,这在一些应用中是必不可少的。传统的特征选择方法由于搜索空间大,往往无法得到全局最优解。已经提出了许多混合技术,这些技术依赖于合并多个单独使用的搜索策略来解决FS问题。本文提出了一种改进的饥饿游戏搜索算法(mHGS),用于解决优化和FS问题。拟议的mHGS的主要优点是解决了原HGS中提出的以下缺点;(1)避免局部搜索;(2)解决过早收敛问题;(3)平衡开发和勘探阶段。mHGS已通过IEEE进化计算大会2020 (CEC'20)的优化测试和10个医疗和化学数据集进行了评估。数据的维度可达20000个或更多特征。所提出算法的结果已与多种知名的优化方法进行了比较,包括改进的多算子差分进化算法(IMODE)、引力搜索算法、灰狼优化、哈里斯鹰优化、鲸鱼优化算法、黏菌算法和饥饿搜索游戏搜索。实验结果表明,该算法能够在不增加计算量和提高收敛速度的前提下生成有效的搜索结果。同时也提高了SVM的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信