Neural Computing & Applications最新文献

筛选
英文 中文
Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data. 基于模糊的饥饿游戏搜索算法在医疗数据中的全局优化和特征选择。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-07916-9
Essam H Houssein, Mosa E Hosney, Waleed M Mohamed, Abdelmgeid A Ali, Eman M G Younis
{"title":"Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data.","authors":"Essam H Houssein,&nbsp;Mosa E Hosney,&nbsp;Waleed M Mohamed,&nbsp;Abdelmgeid A Ali,&nbsp;Eman M G Younis","doi":"10.1007/s00521-022-07916-9","DOIUrl":"https://doi.org/10.1007/s00521-022-07916-9","url":null,"abstract":"<p><p>Feature selection (FS) is one of the basic data preprocessing steps in data mining and machine learning. It is used to reduce feature size and increase model generalization. In addition to minimizing feature dimensionality, it also enhances classification accuracy and reduces model complexity, which are essential in several applications. Traditional methods for feature selection often fail in the optimal global solution due to the large search space. Many hybrid techniques have been proposed depending on merging several search strategies which have been used individually as a solution to the FS problem. This study proposes a modified hunger games search algorithm (mHGS), for solving optimization and FS problems. The main advantages of the proposed mHGS are to resolve the following drawbacks that have been raised in the original HGS; (1) avoiding the local search, (2) solving the problem of premature convergence, and (3) balancing between the exploitation and exploration phases. The mHGS has been evaluated by using the IEEE Congress on Evolutionary Computation 2020 (CEC'20) for optimization test and ten medical and chemical datasets. The data have dimensions up to 20000 features or more. The results of the proposed algorithm have been compared to a variety of well-known optimization methods, including improved multi-operator differential evolution algorithm (IMODE), gravitational search algorithm, grey wolf optimization, Harris Hawks optimization, whale optimization algorithm, slime mould algorithm and hunger search games search. The experimental results suggest that the proposed mHGS can generate effective search results without increasing the computational cost and improving the convergence speed. It has also improved the SVM classification performance.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 7","pages":"5251-5275"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10274818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function. 基于混合适应度函数的混沌冠状病毒优化算法的多级阈值卫星图像分割。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-07718-z
Khalid M Hosny, Asmaa M Khalid, Hanaa M Hamza, Seyedali Mirjalili
{"title":"Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function.","authors":"Khalid M Hosny,&nbsp;Asmaa M Khalid,&nbsp;Hanaa M Hamza,&nbsp;Seyedali Mirjalili","doi":"10.1007/s00521-022-07718-z","DOIUrl":"https://doi.org/10.1007/s00521-022-07718-z","url":null,"abstract":"<p><p>Image segmentation is a critical step in digital image processing applications. One of the most preferred methods for image segmentation is multilevel thresholding, in which a set of threshold values is determined to divide an image into different classes. However, the computational complexity increases when the required thresholds are high. Therefore, this paper introduces a modified Coronavirus Optimization algorithm for image segmentation. In the proposed algorithm, the chaotic map concept is added to the initialization step of the naive algorithm to increase the diversity of solutions. A hybrid of the two commonly used methods, Otsu's and Kapur's entropy, is applied to form a new fitness function to determine the optimum threshold values. The proposed algorithm is evaluated using two different datasets, including six benchmarks and six satellite images. Various evaluation metrics are used to measure the quality of the segmented images using the proposed algorithm, such as mean square error, peak signal-to-noise ratio, Structural Similarity Index, Feature Similarity Index, and Normalized Correlation Coefficient. Additionally, the best fitness values are calculated to demonstrate the proposed method's ability to find the optimum solution. The obtained results are compared to eleven powerful and recent metaheuristics and prove the superiority of the proposed algorithm in the image segmentation problem.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 1","pages":"855-886"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10497954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Empirical validation of ELM trained neural networks for financial modelling. ELM训练神经网络用于金融建模的实证验证。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-07792-3
Volodymyr Novykov, Christopher Bilson, Adrian Gepp, Geoff Harris, Bruce James Vanstone
{"title":"Empirical validation of ELM trained neural networks for financial modelling.","authors":"Volodymyr Novykov,&nbsp;Christopher Bilson,&nbsp;Adrian Gepp,&nbsp;Geoff Harris,&nbsp;Bruce James Vanstone","doi":"10.1007/s00521-022-07792-3","DOIUrl":"https://doi.org/10.1007/s00521-022-07792-3","url":null,"abstract":"<p><p>The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks. Subsequent analysis identified several areas of performance deviations which we highlight as potentially fruitful areas for further research and performance improvement.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 2","pages":"1581-1605"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10503147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Automatic detection of indoor occupancy based on improved YOLOv5 model. 基于改进YOLOv5模型的室内占用率自动检测。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-07730-3
Chao Wang, Yunchu Zhang, Yanfei Zhou, Shaohan Sun, Hanyuan Zhang, Yepeng Wang
{"title":"Automatic detection of indoor occupancy based on improved YOLOv5 model.","authors":"Chao Wang,&nbsp;Yunchu Zhang,&nbsp;Yanfei Zhou,&nbsp;Shaohan Sun,&nbsp;Hanyuan Zhang,&nbsp;Yepeng Wang","doi":"10.1007/s00521-022-07730-3","DOIUrl":"https://doi.org/10.1007/s00521-022-07730-3","url":null,"abstract":"<p><p>Indoor occupancy detection is essential for energy efficiency control and Coronavirus Disease 2019 traceability. The number and location of people can be accurately identified and determined through classroom surveillance video analysis. This information is used to manage environmental equipment such as HVAC and lighting systems to reduce energy use. However, the mainstream one-stage YOLO algorithm still uses an anchor-based mechanism and couples detection heads to predict. This results in slow model convergence and poor detection performance for densely occluded targets. Therefore, this paper proposed a novel decoupled anchor-free VariFocal loss convolutional network algorithm DFV-YOLOv5 for occupancy detection to tackle these problems. The proposed method uses the YOLOv5 algorithm as a baseline. It uses the anchor-free mechanism to reduce the number of design parameters needing heuristic tuning. Afterwards, to reduce the coupling of the model, speed up the model's convergence ability, and improve the model detection performance, the detection head is decoupled based on the YOLOv5 model. It can resolve the conflict between classification and regression tasks. In addition, we use the VariFocal loss to assign more weights to difficult data points to optimize the class imbalance problem and use the training target <i>q</i> to measure positive samples, treating positive and negative samples asymmetrically. The total loss function is redesigned, the <math><msub><mi>L</mi> <mn>1</mn></msub> </math> loss is increased, and the ablation experiment verifies the effect of the improved loss. By applying a hybrid activation function of the sigmoid linear unit and rectified linear unit, we improved the model's nonlinear representation and reduced the model's inference time. Finally, a classroom dataset was constructed to validate the occupancy detection performance of the model. The proposed model was compared with mainstream target detection models regarding average mean precision, memory allocation, execution time, and the number of parameters on the VOC2012, CrowdHuman and self-built datasets. The experimental results show that the method significantly improves the detection accuracy and robustness, shortens the inference time, and proves the practicality of the algorithm in occupancy detection compared with the mainstream target detection model and related variants of the model.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 3","pages":"2575-2599"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A hybrid DNN-LSTM model for detecting phishing URLs. 用于检测网络钓鱼 URL 的 DNN-LSTM 混合模型。
IF 4.5 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2021-08-08 DOI: 10.1007/s00521-021-06401-z
Alper Ozcan, Cagatay Catal, Emrah Donmez, Behcet Senturk
{"title":"A hybrid DNN-LSTM model for detecting phishing URLs.","authors":"Alper Ozcan, Cagatay Catal, Emrah Donmez, Behcet Senturk","doi":"10.1007/s00521-021-06401-z","DOIUrl":"10.1007/s00521-021-06401-z","url":null,"abstract":"<p><p>Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental institutions. Phishing websites aim to access and retrieve users' important information such as personal identification, social security number, password, e-mail, credit card, and other account information. Several anti-phishing techniques have been developed to cope with the increasing number of phishing attacks so far. Machine learning and particularly, deep learning algorithms are nowadays the most crucial techniques used to detect and prevent phishing attacks because of their strong learning abilities on massive datasets and their state-of-the-art results in many classification problems. Previously, two types of feature extraction techniques [i.e., character embedding-based and manual natural language processing (NLP) feature extraction] were used in isolation. However, researchers did not consolidate these features and therefore, the performance was not remarkable. Unlike previous works, our study presented an approach that utilizes both feature extraction techniques. We discussed how to combine these feature extraction techniques to fully utilize from the available data. This paper proposes hybrid deep learning models based on long short-term memory and deep neural network algorithms for detecting phishing uniform resource locator and evaluates the performance of the models on phishing datasets. The proposed hybrid deep learning models utilize both character embedding and NLP features, thereby simultaneously exploiting deep connections between characters and revealing NLP-based high-level connections. Experimental results showed that the proposed models achieve superior performance than the other phishing detection models in terms of accuracy metric.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 7","pages":"4957-4973"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10703149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm. 基于遗传算法的空间注意力辅助CNN对传感器数据的人类活动识别。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-07911-0
Apu Sarkar, S K Sabbir Hossain, Ram Sarkar
{"title":"Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.","authors":"Apu Sarkar,&nbsp;S K Sabbir Hossain,&nbsp;Ram Sarkar","doi":"10.1007/s00521-022-07911-0","DOIUrl":"https://doi.org/10.1007/s00521-022-07911-0","url":null,"abstract":"<p><p>Capturing time and frequency relationships of time series signals offers an inherent barrier for automatic human activity recognition (HAR) from wearable sensor data. Extracting spatiotemporal context from the feature space of the sensor reading sequence is challenging for the current recurrent, convolutional, or hybrid activity recognition models. The overall classification accuracy also gets affected by large size feature maps that these models generate. To this end, in this work, we have put forth a hybrid architecture for wearable sensor data-based HAR. We initially use Continuous Wavelet Transform to encode the time series of sensor data as multi-channel images. Then, we utilize a Spatial Attention-aided Convolutional Neural Network (CNN) to extract higher-dimensional features. To find the most essential features for recognizing human activities, we develop a novel feature selection (FS) method. In order to identify the fitness of the features for the FS, we first employ three filter-based methods: Mutual Information (MI), Relief-F, and minimum redundancy maximum relevance (mRMR). The best set of features is then chosen by removing the lower-ranked features using a modified version of the Genetic Algorithm (GA). The K-Nearest Neighbors (KNN) classifier is then used to categorize human activities. We conduct comprehensive experiments on five well-known, publicly accessible HAR datasets, namely UCI-HAR, WISDM, MHEALTH, PAMAP2, and HHAR. Our model significantly outperforms the state-of-the-art models in terms of classification performance. We also observe an improvement in overall recognition accuracy with the use of GA-based FS technique with a lower number of features. The source code of the paper is publicly available here https://github.com/apusarkar2195/HAR_WaveletTransform_SpatialAttention_FeatureSelection.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 7","pages":"5165-5191"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10757508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Novel favipiravir pattern-based learning model for automated detection of specific language impairment disorder using vowels. 利用元音自动检测特定语言障碍症的新型法非拉韦模式学习模型。
IF 4.5 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2022-11-13 DOI: 10.1007/s00521-022-07999-4
Prabal Datta Barua, Emrah Aydemir, Sengul Dogan, Mehmet Erten, Feyzi Kaysi, Turker Tuncer, Hamido Fujita, Elizabeth Palmer, U Rajendra Acharya
{"title":"Novel favipiravir pattern-based learning model for automated detection of specific language impairment disorder using vowels.","authors":"Prabal Datta Barua, Emrah Aydemir, Sengul Dogan, Mehmet Erten, Feyzi Kaysi, Turker Tuncer, Hamido Fujita, Elizabeth Palmer, U Rajendra Acharya","doi":"10.1007/s00521-022-07999-4","DOIUrl":"10.1007/s00521-022-07999-4","url":null,"abstract":"<p><p>Specific language impairment (SLI) is one of the most common diseases in children, and early diagnosis can help to obtain better timely therapy economically. It is difficult and time-consuming for clinicians to accurately detect SLI through standard clinical assessments. Hence, machine learning algorithms have been developed to assist in the accurate diagnosis of SLI. This work aims to investigate the graph of the favipiravir molecule-based feature extraction function and propose an accurate SLI detection model using vowels. We proposed a novel handcrafted machine learning framework. This architecture comprises the favipiravir molecular structure pattern, statistical feature extractor, wavelet packet decomposition (WPD), iterative neighborhood component analysis (INCA), and support vector machine (SVM) classifier. Two feature extraction models, statistical and textural, are employed in the handcrafted feature generation methodology. A new nature-inspired graph-based feature extractor that uses the chemical depiction of the favipiravir (favipiravir became popular with the COVID-19 pandemic) is employed for feature extraction. Finally, the proposed favipiravir pattern, statistical feature extractor, and wavelet packet decomposition are used to create a feature vector. Moreover, a statistical feature extractor is used in this work. The WPD generates multilevel features, and the most meaningful features are selected using the NCA feature selector. Finally, these chosen features are fed to SVM classifier for automated classification. Two validation methods, (i) leave one subject out (LOSO) and (ii) tenfold cross-validations (CV), are used to obtain robust classification results. Our proposed favipiravir pattern-based model developed using a vowel dataset can detect SLI children with an accuracy of 99.87% and 98.86% using tenfold and LOSO CV strategies, respectively. These results demonstrated the high vowel classification ability of the proposed favipiravir pattern-based model.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 8","pages":"6065-6077"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9660223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10801917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis and comparison of Machine Learning and LoRa-based Healthcare model. 基于机器学习和LoRa的医疗保健模型的性能分析和比较。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2023-03-07 DOI: 10.1007/s00521-023-08411-5
Navneet Verma, Sukhdip Singh, Devendra Prasad
{"title":"Performance analysis and comparison of Machine Learning and LoRa-based Healthcare model.","authors":"Navneet Verma,&nbsp;Sukhdip Singh,&nbsp;Devendra Prasad","doi":"10.1007/s00521-023-08411-5","DOIUrl":"10.1007/s00521-023-08411-5","url":null,"abstract":"<p><p>Diabetes Mellitus (DM) is a widespread condition that is one of the main causes of health disasters around the world, and health monitoring is one of the sustainable development topics. Currently, the Internet of Things (IoT) and Machine Learning (ML) technologies work together to provide a reliable method of monitoring and predicting Diabetes Mellitus. In this paper, we present the performance of a model for patient real-time data collection that employs the Hybrid Enhanced Adaptive Data Rate (HEADR) algorithm for the Long-Range (LoRa) protocol of the IoT. On the Contiki Cooja simulator, the LoRa protocol's performance is measured in terms of high dissemination and dynamic data transmission range allocation. Furthermore, by employing classification methods for the detection of diabetes severity levels on acquired data via the LoRa (HEADR) protocol, Machine Learning prediction takes place. For prediction, a variety of Machine Learning classifiers are employed, and the final results are compared with the already existing models where the Random Forest and Decision Tree classifiers outperform the others in terms of precision, recall, <i>F</i>-measure, and receiver operating curve (ROC) in the Python programming language. We also discovered that using <i>k</i>-fold cross-validation on <i>k</i>-neighbors, Logistic regression (LR), and Gaussian Nave Bayes (GNB) classifiers boosted the accuracy.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 17","pages":"12751-12761"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9479074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special issue on neuro, fuzzy and their hybridization. 神经、模糊及其杂交专刊。
IF 6 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 DOI: 10.1007/s00521-022-08181-6
Longzhi Yang, Vijayakumar Varadarajan, Yanpeng Qu
{"title":"Special issue on neuro, fuzzy and their hybridization.","authors":"Longzhi Yang,&nbsp;Vijayakumar Varadarajan,&nbsp;Yanpeng Qu","doi":"10.1007/s00521-022-08181-6","DOIUrl":"https://doi.org/10.1007/s00521-022-08181-6","url":null,"abstract":"","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 10","pages":"7147-7148"},"PeriodicalIF":6.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9489892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E-learningDJUST: E-learning dataset from Jordan university of science and technology toward investigating the impact of COVID-19 pandemic on education. E-learningDJUST:约旦科技大学的电子学习数据集,用于调查 COVID-19 大流行病对教育的影响。
IF 4.5 3区 计算机科学
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2021-11-13 DOI: 10.1007/s00521-021-06712-1
Malak Abdullah, Mahmoud Al-Ayyoub, Saif AlRawashdeh, Farah Shatnawi
{"title":"E-learningDJUST: E-learning dataset from Jordan university of science and technology toward investigating the impact of COVID-19 pandemic on education.","authors":"Malak Abdullah, Mahmoud Al-Ayyoub, Saif AlRawashdeh, Farah Shatnawi","doi":"10.1007/s00521-021-06712-1","DOIUrl":"10.1007/s00521-021-06712-1","url":null,"abstract":"<p><p>Recently, the COVID-19 pandemic has triggered different behaviors in education, especially during the lockdown, to contain the virus outbreak in the world. As a result, educational institutions worldwide are currently using online learning platforms to maintain their education presence. This research paper introduces and examines a dataset, E-LearningDJUST, that represents a sample of the student's study progress during the pandemic at Jordan University of Science and Technology (JUST). The dataset depicts a sample of the university's students as it includes 9,246 students from 11 faculties taking four courses in spring 2020, summer 2020, and fall 2021 semesters. To the best of our knowledge, it is the first collected dataset that reflects the students' study progress within a Jordanian institute using e-learning system records. One of this work's key findings is observing a high correlation between e-learning events and the final grades out of 100. Thus, the E-LearningDJUST dataset has been experimented with two robust machine learning models (Random Forest and XGBoost) and one simple deep learning model (Feed Forward Neural Network) to predict students' performances. Using RMSE as the primary evaluation criteria, the RMSE values range between 7 and 17. Among the other main findings, the application of feature selection with the random forest leads to better prediction results for all courses as the RMSE difference ranges between (0-0.20). Finally, a comparison study examined students' grades before and after the Coronavirus pandemic to understand how it impacted their grades. A high success rate has been observed during the pandemic compared to what it was before, and this is expected because the exams were online. However, the proportion of students with high marks remained similar to that of pre-pandemic courses.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 16","pages":"11481-11495"},"PeriodicalIF":4.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9492167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信