{"title":"用于检测网络钓鱼 URL 的 DNN-LSTM 混合模型。","authors":"Alper Ozcan, Cagatay Catal, Emrah Donmez, Behcet Senturk","doi":"10.1007/s00521-021-06401-z","DOIUrl":null,"url":null,"abstract":"<p><p>Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental institutions. Phishing websites aim to access and retrieve users' important information such as personal identification, social security number, password, e-mail, credit card, and other account information. Several anti-phishing techniques have been developed to cope with the increasing number of phishing attacks so far. Machine learning and particularly, deep learning algorithms are nowadays the most crucial techniques used to detect and prevent phishing attacks because of their strong learning abilities on massive datasets and their state-of-the-art results in many classification problems. Previously, two types of feature extraction techniques [i.e., character embedding-based and manual natural language processing (NLP) feature extraction] were used in isolation. However, researchers did not consolidate these features and therefore, the performance was not remarkable. Unlike previous works, our study presented an approach that utilizes both feature extraction techniques. We discussed how to combine these feature extraction techniques to fully utilize from the available data. This paper proposes hybrid deep learning models based on long short-term memory and deep neural network algorithms for detecting phishing uniform resource locator and evaluates the performance of the models on phishing datasets. The proposed hybrid deep learning models utilize both character embedding and NLP features, thereby simultaneously exploiting deep connections between characters and revealing NLP-based high-level connections. Experimental results showed that the proposed models achieve superior performance than the other phishing detection models in terms of accuracy metric.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349600/pdf/","citationCount":"0","resultStr":"{\"title\":\"A hybrid DNN-LSTM model for detecting phishing URLs.\",\"authors\":\"Alper Ozcan, Cagatay Catal, Emrah Donmez, Behcet Senturk\",\"doi\":\"10.1007/s00521-021-06401-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental institutions. Phishing websites aim to access and retrieve users' important information such as personal identification, social security number, password, e-mail, credit card, and other account information. Several anti-phishing techniques have been developed to cope with the increasing number of phishing attacks so far. Machine learning and particularly, deep learning algorithms are nowadays the most crucial techniques used to detect and prevent phishing attacks because of their strong learning abilities on massive datasets and their state-of-the-art results in many classification problems. Previously, two types of feature extraction techniques [i.e., character embedding-based and manual natural language processing (NLP) feature extraction] were used in isolation. However, researchers did not consolidate these features and therefore, the performance was not remarkable. Unlike previous works, our study presented an approach that utilizes both feature extraction techniques. We discussed how to combine these feature extraction techniques to fully utilize from the available data. This paper proposes hybrid deep learning models based on long short-term memory and deep neural network algorithms for detecting phishing uniform resource locator and evaluates the performance of the models on phishing datasets. The proposed hybrid deep learning models utilize both character embedding and NLP features, thereby simultaneously exploiting deep connections between characters and revealing NLP-based high-level connections. Experimental results showed that the proposed models achieve superior performance than the other phishing detection models in terms of accuracy metric.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-021-06401-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06401-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A hybrid DNN-LSTM model for detecting phishing URLs.
Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental institutions. Phishing websites aim to access and retrieve users' important information such as personal identification, social security number, password, e-mail, credit card, and other account information. Several anti-phishing techniques have been developed to cope with the increasing number of phishing attacks so far. Machine learning and particularly, deep learning algorithms are nowadays the most crucial techniques used to detect and prevent phishing attacks because of their strong learning abilities on massive datasets and their state-of-the-art results in many classification problems. Previously, two types of feature extraction techniques [i.e., character embedding-based and manual natural language processing (NLP) feature extraction] were used in isolation. However, researchers did not consolidate these features and therefore, the performance was not remarkable. Unlike previous works, our study presented an approach that utilizes both feature extraction techniques. We discussed how to combine these feature extraction techniques to fully utilize from the available data. This paper proposes hybrid deep learning models based on long short-term memory and deep neural network algorithms for detecting phishing uniform resource locator and evaluates the performance of the models on phishing datasets. The proposed hybrid deep learning models utilize both character embedding and NLP features, thereby simultaneously exploiting deep connections between characters and revealing NLP-based high-level connections. Experimental results showed that the proposed models achieve superior performance than the other phishing detection models in terms of accuracy metric.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.