用于优化神经网络权重的基于档案的冠状病毒群体免疫算法。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2023-04-19 DOI:10.1007/s00521-023-08577-y
Iyad Abu Doush, Mohammed A Awadallah, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Ammar Kamal Abasi, Zaid Abdi Alkareem Alyasseri
{"title":"用于优化神经网络权重的基于档案的冠状病毒群体免疫算法。","authors":"Iyad Abu Doush, Mohammed A Awadallah, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Ammar Kamal Abasi, Zaid Abdi Alkareem Alyasseri","doi":"10.1007/s00521-023-08577-y","DOIUrl":null,"url":null,"abstract":"<p><p>The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 21","pages":"15923-15941"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.\",\"authors\":\"Iyad Abu Doush, Mohammed A Awadallah, Mohammed Azmi Al-Betar, Osama Ahmad Alomari, Sharif Naser Makhadmeh, Ammar Kamal Abasi, Zaid Abdi Alkareem Alyasseri\",\"doi\":\"10.1007/s00521-023-08577-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":\"35 21\",\"pages\":\"15923-15941\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10115390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-023-08577-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08577-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

前馈神经网络,特别是多层感知器神经网络(MLP)的监督学习过程的成功取决于其控制参数(即权重和偏差)的适当配置。通常,使用梯度下降法来寻找权重和偏差的最佳值。梯度下降法存在局部最优陷阱和收敛速度慢的问题。因此,邀请了诸如元启发式的随机逼近方法。冠状病毒群体免疫优化器(CHIO)是一种最新的元启发式基于人类的算法,源于群体免疫机制,作为治疗冠状病毒大流行传播的一种方法。在本文中,提出并应用了一种外部存档策略,以引导人口更接近更有前景的搜索区域。外部存档是在算法进化过程中实现的,它保存了以后使用的最佳解决方案。这种增强版的CHIO被称为ACHIO。该算法被用于MLP的训练过程中,以找到其最优控制参数,从而提高其分类精度。使用类别范围在2到10之间的15个分类数据集对所提出的方法进行了评估。在分类精度方面,将ACHIO的性能与六种著名的群体智能算法和原始的CHIO进行了比较。有趣的是,ACHIO能够在十五个分类数据集中的十个分类数据集中产生优于其他比较方法的准确结果,并对其他分类数据集产生非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.

Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.

Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.

Archive-based coronavirus herd immunity algorithm for optimizing weights in neural networks.

The success of the supervised learning process for feedforward neural networks, especially multilayer perceptron neural network (MLP), depends on the suitable configuration of its controlling parameters (i.e., weights and biases). Normally, the gradient descent method is used to find the optimal values of weights and biases. The gradient descent method suffers from the local optimal trap and slow convergence. Therefore, stochastic approximation methods such as metaheuristics are invited. Coronavirus herd immunity optimizer (CHIO) is a recent metaheuristic human-based algorithm stemmed from the herd immunity mechanism as a way to treat the spread of the coronavirus pandemic. In this paper, an external archive strategy is proposed and applied to direct the population closer to more promising search regions. The external archive is implemented during the algorithm evolution, and it saves the best solutions to be used later. This enhanced version of CHIO is called ACHIO. The algorithm is utilized in the training process of MLP to find its optimal controlling parameters thus empowering their classification accuracy. The proposed approach is evaluated using 15 classification datasets with classes ranging between 2 to 10. The performance of ACHIO is compared against six well-known swarm intelligence algorithms and the original CHIO in terms of classification accuracy. Interestingly, ACHIO is able to produce accurate results that excel other comparative methods in ten out of the fifteen classification datasets and very competitive results for others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信