{"title":"EOS-3D-DCNN: Ebola optimization search-based 3D-dense convolutional neural network for corn leaf disease prediction.","authors":"C Ashwini, V Sellam","doi":"10.1007/s00521-023-08289-3","DOIUrl":null,"url":null,"abstract":"<p><p>Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043543/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08289-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Corn disease prediction is an essential part of agricultural productivity. This paper presents a novel 3D-dense convolutional neural network (3D-DCNN) optimized using the Ebola optimization search (EOS) algorithm to predict corn disease targeting the increased prediction accuracy than the conventional AI methods. Since the dataset samples are generally insufficient, the paper uses some preliminary pre-processing approaches to increase the sample set and improve the samples for corn disease. The Ebola optimization search (EOS) technique is used to reduce the classification errors of the 3D-CNN approach. As an outcome, the corn disease is predicted and classified accurately and more effectually. The accuracy of the proposed 3D-DCNN-EOS model is improved, and some necessary baseline tests are performed to project the efficacy of the anticipated model. The simulation is performed in the MATLAB 2020a environment, and the outcomes specify the significance of the proposed model over other approaches. The feature representation of the input data is learned effectually to trigger the model's performance. When the proposed method is compared to other existing techniques, it outperforms them in terms of precision, the area under receiver operating characteristics (AUC), f1 score, Kappa statistic error (KSE), accuracy, root mean square error value (RMSE), and recall.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.