Photonics and Nanostructures-Fundamentals and Applications最新文献

筛选
英文 中文
Optical fiber localized surface plasmon resonance sensor based on dense gold trisoctahedra 基于致密金三八面体的光纤局域表面等离子体共振传感器
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-06-07 DOI: 10.1016/j.photonics.2025.101411
Yu Shi, Zecheng Wei, Gengshuo Ran, Rong Zhang, Mei Kong, Meiling Zhang
{"title":"Optical fiber localized surface plasmon resonance sensor based on dense gold trisoctahedra","authors":"Yu Shi,&nbsp;Zecheng Wei,&nbsp;Gengshuo Ran,&nbsp;Rong Zhang,&nbsp;Mei Kong,&nbsp;Meiling Zhang","doi":"10.1016/j.photonics.2025.101411","DOIUrl":"10.1016/j.photonics.2025.101411","url":null,"abstract":"<div><div>Tuning the plasmonic coupling of noble metal nanoparticles is important for improving the sensitivity and performance of localized surface plasmon resonance (LSPR) sensing. Combining the excellent LSPR performance of gold trisoctahedra (Au TOH) with unique tips, a novel optical fiber LSPR sensor was prepared by uniformly and densely assembling Au TOH on optical fiber using liquid-liquid interface self-assembly method. This method allows for the non-destructive transfer of pre-prepared dense Au TOH monolayer film onto optical fiber in a simple and time-saving manner. The LSPR characteristics of Au TOH on optical fiber with different spacing were simulated by the finite difference time domain (FDTD). Expectedly, the decreasing of the Au TOH spacing can enhance the local electric field strength, and leads to LSPR peak broadening, resonance wavelength redshift, and improving the sensing sensitivity. Meanwhile, the nanoparticle gap of the practically prepared optical fiber LSPR sensor was approximately 5 nm, and such narrow gap ensures the sensitivity of sensor based on the theoretical simulation results. Furthermore, the detection of sucrose solutions with different concentrations was successfully achieved based on the sensor combined with microfluidic technology, with the highest sensitivity up to 200.67 nm/RIU. The remarkable performance and simple preparation strategy make this optical fiber LSPR sensor own excellent potentials for highly sensitive and cost-effective biomedical sensing applications.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101411"},"PeriodicalIF":2.5,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization strategy of ultra-compact metasurface-based filter ordering on sensors for improved spectral retrieval 基于超紧凑超表面的传感器滤波排序优化策略,提高光谱检索效率
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-06-03 DOI: 10.1016/j.photonics.2025.101409
Trideeb Bhattacharya , Marie-Anne Burcklen , Mathilde Larché , Mondher Besbes , S. Ram Prakash , Stéphane Monfray , Henri Benisty
{"title":"Optimization strategy of ultra-compact metasurface-based filter ordering on sensors for improved spectral retrieval","authors":"Trideeb Bhattacharya ,&nbsp;Marie-Anne Burcklen ,&nbsp;Mathilde Larché ,&nbsp;Mondher Besbes ,&nbsp;S. Ram Prakash ,&nbsp;Stéphane Monfray ,&nbsp;Henri Benisty","doi":"10.1016/j.photonics.2025.101409","DOIUrl":"10.1016/j.photonics.2025.101409","url":null,"abstract":"<div><div>CMOS technologies can provide miniature filters with few-nm passband in the visible, much suited to on-chip spectrometers and hyperspectral imaging. However, crosstalk can become challenging and degrade spectral retrieval at the smallest sizes. A filter/metasurface bank design is a first demanding step for this scope, playing with in-plane patterns/“atoms”. For a miniature device of 10–100 small pixels, each 1–3 <em>μ</em>m wide, the filters finite extent incurs an extra penalty: cross-talk between neighbor pixels, hard to minimize through electromagnetic tools. A distinct and useful minimization suited to the CMOS context is then to select the arrangement of <em>N</em> filters on the array to privilege the less penalizing neighbor pairs. This amounts to a path selection problem in the <em>N</em>×(<em>N</em>−1) space of the inter-micro-filter cross-talks. We evaluate the resulting benefit in terms of the condition number of the system’s spectral function matrix, the basic ingredient for spectral retrieval. In one dimension, we find that small arrays can be tackled by brute force up to <em>N</em>∼15 filters, but a minimization through a simply weighted proxy, a summed cross-talk combination, is more advantageous beyond. In two-dimensions, the topology only partly changes the trend. Relevant examples of infinite and finite filters based on amorphous silicon and silica are also provided to justify the choice of a rather broad cross-talk distribution in the inter-filter space. Gains of <em>c</em><sup>−1</sup>∕〈<em>c</em><sup>−1</sup>〉=1.5–2.5 on the inverse of the condition number <em>c</em> (and thus the accuracy of spectral retrieval) emerge from the study.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101409"},"PeriodicalIF":2.5,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144263312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarization-dependent direct laser nanostructuring of halide perovskites 依赖偏振的卤化物钙钛矿直接激光纳米结构
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-06-03 DOI: 10.1016/j.photonics.2025.101408
Alexey Zhizhchenko , Artem Cherepakhin , Eugeny Mitsai , Xiaoqiang Li , Xianshao Zou , Yuri Mezenov , Aleksandr A. Kuchmizhak , Sergey Makarov
{"title":"Polarization-dependent direct laser nanostructuring of halide perovskites","authors":"Alexey Zhizhchenko ,&nbsp;Artem Cherepakhin ,&nbsp;Eugeny Mitsai ,&nbsp;Xiaoqiang Li ,&nbsp;Xianshao Zou ,&nbsp;Yuri Mezenov ,&nbsp;Aleksandr A. Kuchmizhak ,&nbsp;Sergey Makarov","doi":"10.1016/j.photonics.2025.101408","DOIUrl":"10.1016/j.photonics.2025.101408","url":null,"abstract":"<div><div>Laser ablation of halide perovskites is a powerful tool for precise nanopatterning and formation of various nanophotonic designs supporting unique optical properties or lasing. In this study, we investigate the polarization-dependent effects in femtosecond laser ablation of halide perovskites, providing experimental evidence of their non-symmetrical nanostructuring. Through systematic analysis supported by optical simulations, we demonstrate that the shape of the ablated craters evolving under multi-pulse irradiation exhibits a pronounced dependence on the laser polarization, leading to anisotropic material removal. Our simulations and experiments also reveal that the asymmetric energy deposition due to local redistribution of the absorbed laser energy profile plays a critical role during surface scanning by the laser beam, affecting the resulting track morphology. As a result, we justify the optimal nanostructuring regimes allowing the quasi-uniform and gear-shaped perovskite microdisks to imprint upon them supporting low-threshold lasing upon optical excitation. Our findings provide new insights into laser-matter interactions in halide perovskites and open possibilities for controlled laser nanostructuring of optoelectronic materials.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101408"},"PeriodicalIF":2.5,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144241074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Tamm state on electron tunneling through Schottky barrier and on bulk electron photoemission in metal-semiconductor nanostructures 金属半导体纳米结构中Tamm态对电子隧穿肖特基势垒和体电子光发射的影响
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-30 DOI: 10.1016/j.photonics.2025.101405
Renat Sh. Ikhsanov , Igor V. Smetanin , Igor E. Protsenko , Alexander V. Uskov
{"title":"Effects of Tamm state on electron tunneling through Schottky barrier and on bulk electron photoemission in metal-semiconductor nanostructures","authors":"Renat Sh. Ikhsanov ,&nbsp;Igor V. Smetanin ,&nbsp;Igor E. Protsenko ,&nbsp;Alexander V. Uskov","doi":"10.1016/j.photonics.2025.101405","DOIUrl":"10.1016/j.photonics.2025.101405","url":null,"abstract":"<div><div>A model has been developed to calculate the Tamm quasi-level in metal-semiconductor structures with Schottky barrier. The model was used to show that electron resonance tunneling from metal to semiconductor through the Schottky barrier can occur with the Tamm quasi-level at the metal-semiconductor interface. The resonance tunneling with the Tamm quasi-level can strongly affect the electron photoemission in plasmonic structures from the metal to the surrounding semiconductor, lowering the red limit of the photoeffect and significantly increasing the internal quantum efficiency of photoemission and the quantum yield of hot carrier generation in plasmonic structures, especially for photochemistry (photocatalysis).</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101405"},"PeriodicalIF":2.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General solution for the response of materials under radiation and tilted magnetic field: Semi-classical regime 材料在辐射和倾斜磁场作用下响应的通解:半经典状态
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-30 DOI: 10.1016/j.photonics.2025.101406
Narjes Kheirabadi , YuanDong Wang
{"title":"General solution for the response of materials under radiation and tilted magnetic field: Semi-classical regime","authors":"Narjes Kheirabadi ,&nbsp;YuanDong Wang","doi":"10.1016/j.photonics.2025.101406","DOIUrl":"10.1016/j.photonics.2025.101406","url":null,"abstract":"<div><div>The Berry curvature dipole is well-known to cause Hall conductivity. This study expands on previous results to demonstrate how two- and three-dimensional materials react under a tilted magnetic field in the linear and nonlinear regimes. We show how the Hall effect has a quantum origin by deriving the general form of intrinsic and extrinsic currents in materials under a tilted magnetic field. Our focus is on determining the linear and nonlinear response of two-dimensional materials. We also demonstrate that as a result of the perpendicular component of the magnetic field, a current originating from both velocity and Berry curvature can occur in two-dimensional materials and topological crystalline insulators in second harmonic generation and ratchet responses. The findings of this research may provide insight into the transport characteristics of materials in the semi-classical regime and the linear and nonlinear Hall effects.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101406"},"PeriodicalIF":2.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of nonlinear optical properties in GaAs/GaAlAs quantum well with modified Lennard-Jones potential: Role of static electromagnetic fields, intense laser radiation and structure parameters 具有修正Lennard-Jones势的GaAs/GaAlAs量子阱非线性光学性质的研究:静态电磁场、强激光辐射和结构参数的作用
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-30 DOI: 10.1016/j.photonics.2025.101403
K. Hasanirokh , E.B. AL , A.T. Tuzemen , M. Sayrac , H. Sayrac , F. Ungan
{"title":"Investigation of nonlinear optical properties in GaAs/GaAlAs quantum well with modified Lennard-Jones potential: Role of static electromagnetic fields, intense laser radiation and structure parameters","authors":"K. Hasanirokh ,&nbsp;E.B. AL ,&nbsp;A.T. Tuzemen ,&nbsp;M. Sayrac ,&nbsp;H. Sayrac ,&nbsp;F. Ungan","doi":"10.1016/j.photonics.2025.101403","DOIUrl":"10.1016/j.photonics.2025.101403","url":null,"abstract":"<div><div>Through this theoretical investigation, we examine the role of various factors (electric field, magnetic field and intense laser field) on GaAs/GaAlAs quantum well with modified Lennard-Jones potential and their influence on the nonlinear optical rectification, second harmonic generation, and third harmonic generation. First, we calculate the wave functions and energy levels for the four lowest confined states in the structure by solving the Schrödinger equation via the diagonalization method in the framework of the effective mass and parabolic band approximations. The optical calculations utilize the density matrix formalism and the iterative method to express the different degrees of dielectric susceptibility. The intense laser effects on the system are calculated via the Floquet method, which modifies the confinement potential due to the heterostructure. The major outcomes of this quantitative research demonstrate a strong dependence between the mentioned parameters and optical properties. Magnetic field, electric field, intense laser field and potential change drastically the energy levels and matrix elements and thus modifies the optical characteristics. By appropriately manipulating the variables we can not only regulate the optical properties of the quantum well but also help developers in the creation of novel optoelectronic devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101403"},"PeriodicalIF":2.5,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144196187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid nanostructured materials and solar collectors for efficient absorption of intense solar radiation and their application 固体纳米结构材料与高效吸收太阳强辐射的太阳能集热器及其应用
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-29 DOI: 10.1016/j.photonics.2025.101404
Victor K. Pustovalov
{"title":"Solid nanostructured materials and solar collectors for efficient absorption of intense solar radiation and their application","authors":"Victor K. Pustovalov","doi":"10.1016/j.photonics.2025.101404","DOIUrl":"10.1016/j.photonics.2025.101404","url":null,"abstract":"<div><div>Solar collectors (absorbers) in which the solar radiation energy is absorbed by liquid working body have been presented in the end of previous century. Optics of pure water and water-based liquids were analyzed for the purpose of their use in solar absorber, but their absorptive properties are not enough to achieve high efficiency of absorbers. After that, various nanoparticles (nanostructures) were used to increase the absortive properies of working liquid absorbers and their optical properties of nanoparticles immersed in water were discussed. Unfortunately, the temperature range in which absorbers with liquid working fluid operate is limited to a value of no more ∼400 K, which, in turn, limits the efficiency of the absorbers. Solid based solar absorbers in which the solar radiation energy is absorbed by solid working body (glass, cermets, ceramics, etc.) have been offered recently. The use of solid-state solar absorbers based on thermal stable solid materials such as glass, ceramics or cermets expands their operating temperature range to 1000 K and more, thereby increasing the efficiency of solar energy collection and opening up the possibility of using high-temperature processes. The optical properties of pure glass and ceramics-based materials are analyzed and the need to use additional absorbers like nanostructures are analyzed. The results of comparative analysis of the influence of optical properties of various metallic and other nanoparticles depending on their material and thermo-optical parameters, solar radiation characteristics and parameters of various hosts (water, glass, Perlucor ceramics) are presented, allowing to select their parameters for increasing the efficiency of solar absorption. Particular interest was shown in the optical absorption properties of homogeneous Ti, Ni nanoparticles in the range of 50–125 nm radii, embedded in silica glass, and they showed the corresponding properties for efficient absorption of solar radiation in the wavelength spectrum of 200–2500 nm. The high temperature stability and efficiency enhancement of solid-state nanostructured materials are significantly higher compared to traditional liquid absorbers, especially taking into account the unique optical properties of Ti/Ni nanoparticles in glass or ceramics. Applications of solid-state solar collectors, thermal energy storage devices, air collectors, as well as solar distillers and desalinators, containing nanoparticles, in various fields are analyzed. Moreover, the high temperature up to thousands of kelvins realized in solid absorbers allows implementing various subsequent high-temperature processes for using the absorbed solar energy. The unique performance advantages of solid absorbers are confirmed by significant achievements currently available. The development and future application of high-temperature nanostructured solid-state solar absorbers promise perspective future effective achievements in different areas.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101404"},"PeriodicalIF":2.5,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-functional reconfigurable metasurface for reversible circular and linear dichroism 可逆圆和线性二色的双功能可重构超表面
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-29 DOI: 10.1016/j.photonics.2025.101407
Ying Cui, Xueyan Han, Jianguo Lei, Aohan Zhang, Xiaozhe Lu
{"title":"Dual-functional reconfigurable metasurface for reversible circular and linear dichroism","authors":"Ying Cui,&nbsp;Xueyan Han,&nbsp;Jianguo Lei,&nbsp;Aohan Zhang,&nbsp;Xiaozhe Lu","doi":"10.1016/j.photonics.2025.101407","DOIUrl":"10.1016/j.photonics.2025.101407","url":null,"abstract":"<div><div>Dual-functional dichroic devices hold great potential applications in optical integrated systems, but most chiral devices are designed for a specific function of circular or linear dichroism (CD or LD). Herein, we numerically demonstrated a dichroic metasurface with giant and reversible CD and LD simultaneously by controlling the phase transition of Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub>(GSST) in a U-shaped array. By changing the symmetry of the structure via dynamically controlling the states of GSST inclusions, the maximum tuning ranges of CD of −0.89 to 0.89 and LD of −0.85 to 0.92 are achieved in the near-infrared (NIR) band. Theoretical analysis shows that the giant CD originates from the circular polarization selective excitations of magnetic dipole-electric quadrupole (MD-EQ) resonance, and the dual-band LD originates from the linear polarization selective excitations of MD-EQ and toroidal dipole (TD) resonances. To our knowledge, this is the first NIR metasurface capable of large-range switchable CD and LD simultaneously, which may provide new ideas for the design of polarization integrated devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101407"},"PeriodicalIF":2.5,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144189804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and applications of a metasurface supporting chiral quasi-bound state in the continuum: Refractive index sensing and nonlinear harmonic generation 连续介质中支持手性准束缚态的超表面设计与应用:折射率传感与非线性谐波产生
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-23 DOI: 10.1016/j.photonics.2025.101402
Zefa Sun, Yang Li, ShenWei Yin, Yu Mao, Yi Zhou, Zhixiang Tang
{"title":"Design and applications of a metasurface supporting chiral quasi-bound state in the continuum: Refractive index sensing and nonlinear harmonic generation","authors":"Zefa Sun,&nbsp;Yang Li,&nbsp;ShenWei Yin,&nbsp;Yu Mao,&nbsp;Yi Zhou,&nbsp;Zhixiang Tang","doi":"10.1016/j.photonics.2025.101402","DOIUrl":"10.1016/j.photonics.2025.101402","url":null,"abstract":"<div><div>Metasurfaces empowered by quasi-BICs (q-BICs) have been widely employed to enhance chiral optical responses and enable sensing; however, studies that integrate both functionalities within a single design remain limited. In this work, we design a planar q-BIC chiral metasurface consisting of tilted TiO<sub>2</sub> bars with off-center inner holes, placed on a SiO<sub>2</sub> substrate and coated with polymethyl methacrylate (PMMA). Numerical simulations demonstrate that this design presents near-perfect circular dichroism (CD&gt;0.99). Beyond exhibiting strong chirality, refractive index sensing with a sensitivity of 75.8 nm/RIU and a remarkable nonlinear CD approaching 1 are achieved with the same metasurface. These findings may provide a versatile platform for applications such as chiral laser generation, precision chiral sensing, and nonlinear optical filtering.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101402"},"PeriodicalIF":2.5,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal light emitters based on graphene directly grown on chips by etching-precipitation method 采用蚀刻-沉淀法直接在芯片上生长的基于石墨烯的热发光器件
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-05-17 DOI: 10.1016/j.photonics.2025.101400
Yui Shimura , Shinichiro Matano , Jumpei Yamada , Suguru Noda , Hideyuki Maki
{"title":"Thermal light emitters based on graphene directly grown on chips by etching-precipitation method","authors":"Yui Shimura ,&nbsp;Shinichiro Matano ,&nbsp;Jumpei Yamada ,&nbsp;Suguru Noda ,&nbsp;Hideyuki Maki","doi":"10.1016/j.photonics.2025.101400","DOIUrl":"10.1016/j.photonics.2025.101400","url":null,"abstract":"<div><div>Graphene has been actively explored for on-chip nanoscale light sources, due to its small size, high brightness and fast-modulating blackbody radiation sources. However, the productivity problem is that the fabrication processes require a transfer process when mechanically exfoliated or chemical vapor deposited graphene are used, resulting in low productivity and degradation of graphene quality. Here, we fabricated a graphene-based thermal light emitter by using an etching-precipitation method that does not require the transfer process. Infrared and visible light emission was observed from the central constricted area, forming a hot spot. Raman measurements confirmed that defect healing occurred in the central hot spot of graphene due to the annealing effect caused by Joule heating. We also demonstrated that the device has long-term luminescence stability. This light emitter provides a promising avenue for the advancement of on-chip graphene light emitters.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101400"},"PeriodicalIF":2.5,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144124345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信