General solution for the response of materials under radiation and tilted magnetic field: Semi-classical regime

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Narjes Kheirabadi , YuanDong Wang
{"title":"General solution for the response of materials under radiation and tilted magnetic field: Semi-classical regime","authors":"Narjes Kheirabadi ,&nbsp;YuanDong Wang","doi":"10.1016/j.photonics.2025.101406","DOIUrl":null,"url":null,"abstract":"<div><div>The Berry curvature dipole is well-known to cause Hall conductivity. This study expands on previous results to demonstrate how two- and three-dimensional materials react under a tilted magnetic field in the linear and nonlinear regimes. We show how the Hall effect has a quantum origin by deriving the general form of intrinsic and extrinsic currents in materials under a tilted magnetic field. Our focus is on determining the linear and nonlinear response of two-dimensional materials. We also demonstrate that as a result of the perpendicular component of the magnetic field, a current originating from both velocity and Berry curvature can occur in two-dimensional materials and topological crystalline insulators in second harmonic generation and ratchet responses. The findings of this research may provide insight into the transport characteristics of materials in the semi-classical regime and the linear and nonlinear Hall effects.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101406"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000562","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Berry curvature dipole is well-known to cause Hall conductivity. This study expands on previous results to demonstrate how two- and three-dimensional materials react under a tilted magnetic field in the linear and nonlinear regimes. We show how the Hall effect has a quantum origin by deriving the general form of intrinsic and extrinsic currents in materials under a tilted magnetic field. Our focus is on determining the linear and nonlinear response of two-dimensional materials. We also demonstrate that as a result of the perpendicular component of the magnetic field, a current originating from both velocity and Berry curvature can occur in two-dimensional materials and topological crystalline insulators in second harmonic generation and ratchet responses. The findings of this research may provide insight into the transport characteristics of materials in the semi-classical regime and the linear and nonlinear Hall effects.
材料在辐射和倾斜磁场作用下响应的通解:半经典状态
众所周知,贝里曲率偶极子会引起霍尔电导率。这项研究扩展了先前的结果,以证明二维和三维材料如何在线性和非线性的倾斜磁场下反应。我们通过推导材料在倾斜磁场下的内在和外在电流的一般形式来展示霍尔效应如何具有量子起源。我们的重点是确定二维材料的线性和非线性响应。我们还证明,由于磁场的垂直分量,在二次谐波产生和棘轮响应中,二维材料和拓扑晶体绝缘体中可以产生来自速度和贝里曲率的电流。本研究的发现可能有助于深入了解材料在半经典状态下的输运特性以及线性和非线性霍尔效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信