{"title":"General solution for the response of materials under radiation and tilted magnetic field: Semi-classical regime","authors":"Narjes Kheirabadi , YuanDong Wang","doi":"10.1016/j.photonics.2025.101406","DOIUrl":null,"url":null,"abstract":"<div><div>The Berry curvature dipole is well-known to cause Hall conductivity. This study expands on previous results to demonstrate how two- and three-dimensional materials react under a tilted magnetic field in the linear and nonlinear regimes. We show how the Hall effect has a quantum origin by deriving the general form of intrinsic and extrinsic currents in materials under a tilted magnetic field. Our focus is on determining the linear and nonlinear response of two-dimensional materials. We also demonstrate that as a result of the perpendicular component of the magnetic field, a current originating from both velocity and Berry curvature can occur in two-dimensional materials and topological crystalline insulators in second harmonic generation and ratchet responses. The findings of this research may provide insight into the transport characteristics of materials in the semi-classical regime and the linear and nonlinear Hall effects.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101406"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000562","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Berry curvature dipole is well-known to cause Hall conductivity. This study expands on previous results to demonstrate how two- and three-dimensional materials react under a tilted magnetic field in the linear and nonlinear regimes. We show how the Hall effect has a quantum origin by deriving the general form of intrinsic and extrinsic currents in materials under a tilted magnetic field. Our focus is on determining the linear and nonlinear response of two-dimensional materials. We also demonstrate that as a result of the perpendicular component of the magnetic field, a current originating from both velocity and Berry curvature can occur in two-dimensional materials and topological crystalline insulators in second harmonic generation and ratchet responses. The findings of this research may provide insight into the transport characteristics of materials in the semi-classical regime and the linear and nonlinear Hall effects.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.