Varvara Kharitonova , Anastasia Lubimova , Valentin A. Milichko , Semyon V. Bachinin
{"title":"Direct laser writing of binary data on metal-organic framework surface","authors":"Varvara Kharitonova , Anastasia Lubimova , Valentin A. Milichko , Semyon V. Bachinin","doi":"10.1016/j.photonics.2025.101385","DOIUrl":"10.1016/j.photonics.2025.101385","url":null,"abstract":"<div><div>The development of electro-optical computing systems today is proceeding at an unprecedented pace and requires the emergence of new approaches and materials for data recording and storage. Here we report on a direct laser writing (DLW) of binary data on a surface of metal-organic framework (MOF) thin film over 0.5 s with 1.5 μm resolution. The data, expressed as locally modified areas of different depth and potential, are analyzed with atomic force microscopy in Kelvin-probe regime. We reveal that an increase in laser power yields an increase in the potential of the modified area up to 100 mV (compared with 10 mV for the initial MOF surface) and decrease of the area diameter up to 1.5 μm. The mechanism of DLW is also investigated with confocal Raman spectroscopy, confirming the local modification of the structure of MOF thin film. The results, thereby, open the way for fast optical writing of electronic data with compatible density on MOFs at ambient conditions.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101385"},"PeriodicalIF":2.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143777203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikhail Astafurov , Elena Perevedentseva , Nikolay Melnik , Mikhail Shevchenko , Sergey Dorofeev , Alexander Ezhov , Daniil Kozlov , Anastasia Grigorieva , Sergey Klimonsky
{"title":"SERS in opal-type stripe patterned structures with metal coating","authors":"Mikhail Astafurov , Elena Perevedentseva , Nikolay Melnik , Mikhail Shevchenko , Sergey Dorofeev , Alexander Ezhov , Daniil Kozlov , Anastasia Grigorieva , Sergey Klimonsky","doi":"10.1016/j.photonics.2025.101384","DOIUrl":"10.1016/j.photonics.2025.101384","url":null,"abstract":"<div><div>Bilayer opal-type stripes periodically arranged on the same substrate were self-assembled using the vertical deposition of SiO<sub>2</sub> spheres with the intermittent motion of the meniscus. It has been shown that each such stripe with a gold or silver coating can be considered as an independent element for surface enhanced Raman scattering (SERS). The thicknesses of the gold and silver coatings were optimized using computer simulations of electromagnetic field enhancement. Monolayer or bilayer stripes of such type are not inferior to thick opal films with noble metal coating. The stripe patterned structures are easy to manufacture, exhibit good homogeneity and may be promising for automating multiple SERS tests. The structures with gold coating also demonstrate high resistance to environmental influences. The prospects for further improvement of their properties were analyzed.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101384"},"PeriodicalIF":2.5,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143760121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renjie Li , Yanze Gao , Weijie Liu , Tongtong An , Hongcheng Pan , Yuan Mu , Xujin Yuan
{"title":"Photo-thermo-acoustic (PTA) effect of a multilayer composite material with periodic micro-nano structures (PMNS): Modeling, simulation and experiment","authors":"Renjie Li , Yanze Gao , Weijie Liu , Tongtong An , Hongcheng Pan , Yuan Mu , Xujin Yuan","doi":"10.1016/j.photonics.2025.101383","DOIUrl":"10.1016/j.photonics.2025.101383","url":null,"abstract":"<div><div>The photo-thermo-acoustic (PTA) effect of a three-layer composite material whose surface is fabricated with many periodic micro-nano structures (PMNS) is investigated in this paper. The material is composed of a silicon substrate, a thermal insulation layer of polyimide, and a light-absorbing layer of aluminum nanoaggregates. We propose a method for analyzing the PTA effect based on the idea of finite element meshing. The PTA conversion processes including the photo-thermal conversion and the thermal-acoustic conversion are quantitatively simulated. The influence of the geometric parameters of the PMNS on the intensity and space distribution of the sound field is analyzed both by simulation and experiment. The results show that fabricating PMNS on composite materials can significantly enhance the PTA effect. And the finite element analyzing method proposed in this paper can correctly describe and predict the PTA effect of composite materials with two-dimensional PMNS. It is also applicable for analyzing the PTA effects of other similar materials or structures.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101383"},"PeriodicalIF":2.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulkadir Cildir , Farooq A. Tahir , Muhammad Farooq , Adnan Zahid , Muhammad Imran , Qammer H. Abbasi
{"title":"A highly efficient and broadband metasurface for linear-to-linear and linear-to-circular polarization conversion in reflection mode","authors":"Abdulkadir Cildir , Farooq A. Tahir , Muhammad Farooq , Adnan Zahid , Muhammad Imran , Qammer H. Abbasi","doi":"10.1016/j.photonics.2025.101382","DOIUrl":"10.1016/j.photonics.2025.101382","url":null,"abstract":"<div><div>This research paper introduces a new design of metasurface for polarization conversion applications, functioning as both a cross (half-wave plate) and circular (quarter wave plate) polarizer in reflection mode. Comprising unit cells on one side and a metal layer on the other, with a Roger 5880 substrate, the metasurface demonstrates its ability to reflect an incident <span><math><mi>x</mi></math></span>- or <span><math><mi>y</mi></math></span>-polarized wave as a <span><math><mi>y</mi></math></span>- or <span><math><mi>x</mi></math></span>-polarized wave across multiple frequency bands: 9.72–10.00 GHz, 17.65–41.87 GHz, 45.67–45.80 GHz, and 49.66–49.84 GHz. The design achieves a noteworthy 24.82 GHz bandwidth with a 98.72 % fractional bandwidth for linear-to-linear conversion, demonstrating efficiency exceeding 90 %. Simultaneously, the metasurface converts the incident wave into a right-hand circularly polarized (RHCP) wave at frequencies ranging from 9.38 to 9.61 GHz, 45.9–46.1 GHz, and 49.96–50 GHz. It transforms the wave into a left-hand circularly polarized (LHCP) wave within the frequency band from 10.19 to 10.61 GHz, 15.60–16.82 GHz, and 45.45–45.6 GHz. The design also exhibits angular stability up to 45 degrees. Experimental validation using the fabricated prototype confirms the findings, showing good agreement with numerical results. This metasurface comes in handy for future communication, radar application, and health applications. This metasurface is highly suitable for future communication systems, radar applications, and healthcare technologies.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101382"},"PeriodicalIF":2.5,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahesh Valathuru , Pokkunuri Pardhasaradhi , Nagandla Prasad , Boddapati Taraka Phani Madhav , Sudipta Das , Abeer D. Algarni , Mohammed El Ghzaoui
{"title":"Design and analysis of metamaterial-based ultra-broadband micro-scaled absorber with vanadium dioxide (VO2) and silicon dioxide (SiO2) for multiple terahertz applications","authors":"Mahesh Valathuru , Pokkunuri Pardhasaradhi , Nagandla Prasad , Boddapati Taraka Phani Madhav , Sudipta Das , Abeer D. Algarni , Mohammed El Ghzaoui","doi":"10.1016/j.photonics.2025.101381","DOIUrl":"10.1016/j.photonics.2025.101381","url":null,"abstract":"<div><div>This research proposes an ultra-broadband terahertz absorber (UBTA) employing a metamaterial (MTM) structure based on vanadium dioxide (VO<sub>2</sub>). The top layer of the suggested MTM-UBTA model is made up of VO<sub>2</sub> that is 0.2 µm thick, the bottom layer is made up of 3 µm thick gold material, and the middle layer is made up of silicon dioxide (SiO<sub>2</sub>) dielectric material of 7 µm thickness. The simulation results indicate an absorption bandwidth of 4.1 THz, from 2.8 to 6.9 THz, obtained under normal incidence. The suggested absorber maintains absorption above 92 % over a broad operating wavelength of 43.44 μm to 107.06 μm. The main goal of this study is to look into THz metamaterial absorbers based on VO<sub>2</sub> in great detail, including every facet of their design validation and hys RevL through an ECM (Equivalent Circuit Model) approach. Furthermore, the impact of incident and polarization angle on absorbance for TE and TM modes is discussed and polarization insensitivity is verified. The prescribed MTM-ultra-broadband terahertz absorber is suitable for intelligent absorption, terahertz tuning, modulation, cloaking, optic-electro switching, biological sensing, and stealth technology.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101381"},"PeriodicalIF":2.5,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143683868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar A.M. Abdelraouf , Ahmed Mousa , Mohamed Ragab
{"title":"NanoPhotoNet: AI-enhanced design tool for reconfigurable and high-performance multi-layer metasurfaces","authors":"Omar A.M. Abdelraouf , Ahmed Mousa , Mohamed Ragab","doi":"10.1016/j.photonics.2025.101379","DOIUrl":"10.1016/j.photonics.2025.101379","url":null,"abstract":"<div><div>Metasurfaces are crucial in advancing flat optics and nanophotonics, offering unique advantages in creating vibrant structural colors and high-Q factor cavities. Multi-layer metasurfaces (MLMs) take this further by enhancing light-matter interactions inside the single meta-atom at the nanoscale. However, optimizing MLM designs is challenging due to the complex interplay of many parameters, making traditional simulation methods slow and inefficient. In this work, we introduce NanoPhotoNet, an advanced AI-powered design tool that leverages a hybrid deep neural network (DNN) combining convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) models. NanoPhotoNet significantly accelerates the design process for MLMs, achieving over 98.3 % prediction accuracy and a 50,000x speed improvement compared to conventional techniques. This enables the creation of structural colors far beyond the standard RGB range, increasing the RGB gamut area up to 163 %. Additionally, NanoPhotoNet facilitates tunable color generation, extending the capabilities of MLMs to advanced applications like tunable color filters, nanolasers, and reconfigurable beam steering. This approach represents a transformative progress in metasurface design, unlocking new possibilities for high-performance, tunable nanophotonic devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101379"},"PeriodicalIF":2.5,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact hybrid waveguide optical switch with low loss and high extinction ratio based on Ge2Sb2Te5","authors":"Tong Jiang , Qipeng Zhan , Hao Ding , Zhixiang Huang , Li Ding","doi":"10.1016/j.photonics.2025.101368","DOIUrl":"10.1016/j.photonics.2025.101368","url":null,"abstract":"<div><div>High-efficiency and highly integrated optical switches in integrated photonic circuits have long been a pursuit for researchers. Due to the inherent limitations of silicon materials and fabrication processes, commonly used resonant or interferometric optical switches typically require tens to hundreds of micrometers of footprint to achieve desirable modulation efficiency. In response, we propose an optical switch structure filled with phase-change material (PCM) in a narrow slit, with tapered waveguides on curved sides coupling light in and out of the slit, enabling strong light-matter interaction. This structure consists of curved-side tapered coupling waveguides at both ends and a slit filled with GST (Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub>) in the middle. By applying an external stimulus to induce a phase change in the GST, which exhibits significant differences in optical properties between its crystalline and amorphous states, substantial modulation efficiency can be achieved. Operating in the transverse electric mode within the band of 1500–1600 nm, this structure can achieve an extinction ratio (ER) of 34.08 dB and an insertion loss (IL) of 0.18 dB at 1550 nm, and this design can still achieve an ER over 27.26 dB and an IL less than 0.43 dB within a wavelength range of ± 50 nm, with an overall length of just 10 micrometers. The proposed structure offers high modulation efficiency and a low footprint, while also exhibiting high tolerance to fabrication errors, making it highly promising for future photonic communication systems.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101368"},"PeriodicalIF":2.5,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143592347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Ferdous Rahman , Md. Mahin Tasdid , Mohammed M. Fadhali , Mukul Sharma , Mehdi Akermi
{"title":"Unlocking Cesium based new double absorber perovskite solar cells with efficiency above 28 % for next generation solar cell","authors":"Md. Ferdous Rahman , Md. Mahin Tasdid , Mohammed M. Fadhali , Mukul Sharma , Mehdi Akermi","doi":"10.1016/j.photonics.2025.101371","DOIUrl":"10.1016/j.photonics.2025.101371","url":null,"abstract":"<div><div>The limited photon absorption capacity of single-active-layer perovskite solar cells (PSCs) restricts their efficiency and scalability for future photovoltaic applications. This study introduces an innovative double perovskite active layer (DPAL) design, incorporating CsSnI<sub>3</sub> and CsPbI<sub>3</sub>, along with a cadmium sulfide (CdS) electron transport layer (ETL), to overcome these challenges. Using the SCAPS-1D simulation tool, we demonstrate that this novel configuration significantly improves performance, achieving a power conversion efficiency (PCE) of 28.74 %, an open-circuit voltage (V<sub>OC</sub>) of 0.996 V, a short-circuit current density (J<sub>SC</sub>) of 34.94 mA/cm², and a fill factor (FF) of 82.61 %. These results surpass the efficiencies of single-active-layer designs, which reach 17.84 % for CsPbI<sub>3</sub> and 24.08 % for CsSnI<sub>3</sub>. The study further explores the influence of active layer thickness, defect density, and interface defect densities on solar cell performance, along with the effects of doping concentration, series and shunt resistance, and temperature on PCE. This research highlights the potential of DPAL-based PSCs as a promising approach for achieving high-efficiency, stable, and cost-effective solar energy solutions.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101371"},"PeriodicalIF":2.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjiao Lu, Han Li, Xuejun Qiu, Hao Long, Jian Shen
{"title":"Polarization controllable multi-window electromagnetically induced transparency-like in a graphene metamaterial","authors":"Junjiao Lu, Han Li, Xuejun Qiu, Hao Long, Jian Shen","doi":"10.1016/j.photonics.2025.101370","DOIUrl":"10.1016/j.photonics.2025.101370","url":null,"abstract":"<div><div>This study presents a novel metamaterial structure utilizing graphene metamaterial for polarization control, resulting in a multi-window electromagnetically induced transparency (EIT)-like effect. The unit structure comprises double graphene square rings (DGSRs) and a parallel graphene strip (GS). By varying the angle of polarization of the incident light, the number of transparent windows can be switched among 0, 1, 2, and by manipulating the geometric parameters and Fermi level of the graphene structure, the amplitude and frequency of the transparent window can be dynamically adjusted. In addition, when the incident wave is obliquely incident, the metamaterial structure has good insensitivity to the incident angle (<60°). Furthermore, the potential applications of this metamaterial structure in slow light effect and refractive index sensing are also investigated, demonstrating its promising performance.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101370"},"PeriodicalIF":2.5,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tunable NIR nano-absorber based on photothermal response and thermoplasmonic modulation of Au@GSST core-shell nanoparticle","authors":"Ahmad Khanehzar, Naser Zamani, Ali Hatef","doi":"10.1016/j.photonics.2025.101369","DOIUrl":"10.1016/j.photonics.2025.101369","url":null,"abstract":"<div><div>Phase change materials (PCMs) are attractive candidates for tunable devices due to their unique properties, such as high degree of scalability, thermal control, low power consumption, wide waveband operation, and the ability to switch between different optical phases. These properties can be enhanced by integrating PCMs with other materials, such as plasmonic nanoparticles. In this work, a core-shell nanostructure (Au@GSST) is proposed comprising a gold nanoparticle (AuNP) core coated with Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub> (GSST), a PCM with high optical contrast, embedded in an aqueous medium. We demonstrate how the phase transition of GSST can be actively controlled by the light energy absorption of the Au@GSST. The integration of the Au core facilitates the phase change process of GSST due to its plasmonic effect, which leads to lower heat capacity and higher heat conductivity of the AuNP. These characteristics accelerate the GSST phase change process at a lower continuous wave (CW) laser intensity compared to a bare GSST nanoparticle. An induced photothermal process that includes heat transfer, the crystalline fraction, and the electric field enhancement of the Au@GSST, as functions of the laser wavelength and intensity is investigated. Our results show that through this process, the GSST shell can be tuned between fully amorphous, intermediate, and fully crystalline states. This phase transition leads to a substantial modification of the optical responses of the Au@GSST. The absorption, scattering and extinction cross-sections of the structure over a wide range of wavelengths before and after the GSST phase transition is studied. We focus on two specific wavelengths, 778 nm and 919 nm, which exhibit higher light absorption contrast in both the amorphous and crystalline phases of GSST. Such active tunning of Au@GSST without morphological variation can be utilized in reconfigurable nanophotonic devices, such as switches, modulators, and sensors.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101369"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}