Photonics and Nanostructures-Fundamentals and Applications最新文献

筛选
英文 中文
Tuneability and optimum functionality of plasmonic transparent conducting oxide-Ag core-shell nanostructures 等离子透明导电氧化物-银核壳纳米结构的可调性和最佳功能性
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-11-08 DOI: 10.1016/j.photonics.2024.101326
Mohamed K. Zayed , Hesham Fares , Jamal Q.M. Almarashi , Samar Moustafa
{"title":"Tuneability and optimum functionality of plasmonic transparent conducting oxide-Ag core-shell nanostructures","authors":"Mohamed K. Zayed ,&nbsp;Hesham Fares ,&nbsp;Jamal Q.M. Almarashi ,&nbsp;Samar Moustafa","doi":"10.1016/j.photonics.2024.101326","DOIUrl":"10.1016/j.photonics.2024.101326","url":null,"abstract":"<div><div>Tunning localized surface plasmon resonance (LSPR) in transparent conducting oxides (TCO) has a great impact on various LSPR-based technologies. In addition to the commonly reported mechanisms used for tunning LSPR in TCOs (e.g., size, shape, carrier density modifications via intrinsic and extrinsic doping), integrating them in core-shell structures provides an additional degree of freedom to expand its tunability, enhance its functionality, and widen its versatility through application-oriented core-shell geometrical optimization. In this work, we explore the tuneability and functionality of two TCO nanostructures; indium doped tin oxide (ITO) and gallium doped zinc oxide (GZO) encapsulated with silver shell within the extended theoretical Mie theory formalism. The effect of core and shell sizes on LSPR peak position and line width as well as absorption and scattering coefficients is numerically investigated. Simulations showed that LSPRs of ITO-Ag and GZO-Ag core-shell nanostructures have great tunning capabilities, spanning from VIS to IR spectral range including therapeutic window of human tissue and essential solar energy spectrum. Potential functionality as refractive index sensor (RIS) and solar energy absorber (SEA) are examined using appropriate figure of merits <span><math><mrow><mo>(</mo><mi>FoM</mi><mo>)</mo></mrow></math></span>. Simulations indicate that a geometrically optimized core-shell architecture with exceptional <span><math><mi>FoMs</mi></math></span> for RIS and SEA can be realized. Contrary to carrier density manipulation, integrating TCO cores to metallic shells proves to be an effective approach to enhance tunability and optimize functionality for high performance TCO-based plasmonic devices, with minimum impact on the inherited physical and chemical properties of the used TCO-core materials.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101326"},"PeriodicalIF":2.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic MIM waveguide based FR sensors for refractive index sensing of human hemoglobin 基于等离子 MIM 波导的 FR 传感器用于人体血红蛋白的折射率检测
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-31 DOI: 10.1016/j.photonics.2024.101325
Lokendra Singh , Bukya Balaji , Yogesh Tripathi , Roshan Kumar , Sameer Yadav
{"title":"Plasmonic MIM waveguide based FR sensors for refractive index sensing of human hemoglobin","authors":"Lokendra Singh ,&nbsp;Bukya Balaji ,&nbsp;Yogesh Tripathi ,&nbsp;Roshan Kumar ,&nbsp;Sameer Yadav","doi":"10.1016/j.photonics.2024.101325","DOIUrl":"10.1016/j.photonics.2024.101325","url":null,"abstract":"<div><div>Fano resonance (FR) is a universal phenomenon that is used to attain electromagnetic-induced transparency (EIT), high absorption and sensitivity, and low-power photonic devices. This work presents dual FR refractive index (RI) sensor models on a plasmonic metal-insulator-metal (MIM) waveguide system. The FR phenomenon is attained by including circular and elliptic nanorod defects in the bus waveguides. The resonances originate from the defect's narrow discreteness and the rectangular resonator's broad state. Analytical methods such as finite difference time domain (FDTD) and multimode interference coupled mode theory are adopted to analyze the FRs. The shapes of the Fano line and resonance peak amplitude can be tuned independently by controlling the diameter of the defects, the separation between the defects, and the coupling (between the resonator and the bus waveguide) distance. Moreover, the proposed structures detect the RI (human hemoglobin) variation in the bus waveguide and resonator. The obtained results with circular nanorod defect verify the autocorrelation coefficient of 99.92 %, ensuring the device's linearity and high performance. However, an autocorrelation of 99.7 % is attained by using two elliptic nanorod defects.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101325"},"PeriodicalIF":2.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
224-fs soliton pulses generation at 1μm from ytterbium-doped fiber laser with CoTe2 nanosheets as an ultrafast modulator 以 CoTe2 纳米片为超快调制器,在 1μm 波长下从掺镱光纤激光器中产生 224-fs 孤子脉冲
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-30 DOI: 10.1016/j.photonics.2024.101324
Jian-Xiang Zhang , Qian Wang , Kelei Miao
{"title":"224-fs soliton pulses generation at 1μm from ytterbium-doped fiber laser with CoTe2 nanosheets as an ultrafast modulator","authors":"Jian-Xiang Zhang ,&nbsp;Qian Wang ,&nbsp;Kelei Miao","doi":"10.1016/j.photonics.2024.101324","DOIUrl":"10.1016/j.photonics.2024.101324","url":null,"abstract":"<div><div>Transition metal ditellurides (TMDTs) have numerous attractive properties, making them suitable for a wide range of applications. In this study, cobalt ditelluride (CoTe<sub>2</sub>) nanosheets, a promising TMDT for photonic applications, were prepared using an ultrasound-enhanced liquid phase exfoliation (LPE) method. A novel saturable absorber (SA) employing CoTe<sub>2</sub> nanosheets was then fabricated by optically depositing them on microfiber. The nonlinear optical modulation properties of the CoTe<sub>2</sub> SA were investigated. A high-performance 1 μm ultrafast fiber laser was demonstrated by incorporating newly developed CoTe<sub>2</sub> nanosheets-based SA in a ring cavity ytterbium-doped fiber laser (YDFL). The dynamical behaviour of the proposed passively mode-locked YDFL in response to variations in pump optical power was investigated. The findings reveal that the device achieved a modulation depth of 2.5 %, and saturation light intensity of 30.6 MW/cm<sup>2</sup>. Moreover, a stable and robust mode-locked soliton optical pulse sequence with a fundamental repetition frequency of 3.089 MHz, and a pulse duration of 224 fs was generated at 1032 nm. The proposed YDFL, being all-fiber, compact, and cost-effective, is set to find extensive applications in various domains, including optical fiber communication, sensing, and biomedical imaging.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101324"},"PeriodicalIF":2.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid mode splitter for separation and excitation of photonic crystal odd and even modes using plasmonic waveguides 利用等离子波导分离和激发光子晶体奇数和偶数模式的混合模式分离器
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-26 DOI: 10.1016/j.photonics.2024.101323
Ehsan Beiranvand, Mohammad Danaie, Majid Afsahi
{"title":"A hybrid mode splitter for separation and excitation of photonic crystal odd and even modes using plasmonic waveguides","authors":"Ehsan Beiranvand,&nbsp;Mohammad Danaie,&nbsp;Majid Afsahi","doi":"10.1016/j.photonics.2024.101323","DOIUrl":"10.1016/j.photonics.2024.101323","url":null,"abstract":"<div><div>This study introduces a mode splitter through a novel coupling mechanism between photonic crystal waveguides and metal-insulator-metal plasmonic waveguides. Notably, the proposed structure demonstrates the capability to excite both odd and even modes within the photonic crystal waveguide. Numerical simulations of this structure were conducted using the finite difference time domain (FDTD) method. Our numerical analysis reveals an exceptional transmittance of 95 % at the waveguide intersection for the wavelength of 1550 nm. The successful coupling of plasmonic waveguides to photonic crystal waveguides unveils a vast array of opportunities for designing innovative devices that harness the synergistic potential arising from the distinctive characteristics of surface plasmons and photonic crystals. An inherent advantage of this design lies in its simple topology, enabling cost-effective and precise manufacturing processes. This device offers the ability to accurately separate and identify output modes. Additionally, we utilize this coupler in the design of a highly efficient power divider that not only achieves high transmittance but also provides adjustable control over the output power level.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101323"},"PeriodicalIF":2.5,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-modulated acetone monitoring using Al2O3-coated evanescent wave fiber optic sensors 使用 Al2O3 涂层蒸发波光纤传感器进行温度调制丙酮监测
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-24 DOI: 10.1016/j.photonics.2024.101322
P. Manivannan, Zachariah C. Alex
{"title":"Temperature-modulated acetone monitoring using Al2O3-coated evanescent wave fiber optic sensors","authors":"P. Manivannan,&nbsp;Zachariah C. Alex","doi":"10.1016/j.photonics.2024.101322","DOIUrl":"10.1016/j.photonics.2024.101322","url":null,"abstract":"<div><div>This paper presents an experimental study of a fiber-optic-based acetone sensor and its temperature effects for use as a breath analyzer to detect acetone in exhaled breath. The study employs fiber optic evanescent wave-based acetone sensing, utilizing sputter coated Aluminium Oxide (Al<sub>2</sub>O<sub>3</sub>)-coated probes fabricated via clad modification technique. The optical fibers were coated with Al<sub>2</sub>O<sub>3</sub> to achieve thicknesses of 247.03 nm, 334.05 nm, and 468.75 nm. The sensor probes were characterized using, Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), Ultraviolet-Visible (UV-Vis) Spectroscopy, and Spectroscopic Ellipsometry for uniformity, elemental, optical constants, and thickness of the Al<sub>2</sub>O<sub>3</sub>. The spectral responses of the probes were analyzed for acetone concentrations ranging from 0 to 100 ppm, with temperature modulation from room temperature to 100 °C. The probe with a ∼334 nm thick Al<sub>2</sub>O<sub>3</sub> coating exhibited the highest response, reaching 6.2 % at 100 °C in 100 ppm acetone. Linear regression revealed that the ∼334 nm coated probe had the highest sensitivity at 5.98 counts/ppm. The sensor showed response and recovery times of approximately 12 and 17 seconds, respectively. This study underscores the stability and repeatability of temperature-modulated Al<sub>2</sub>O<sub>3</sub>-coated fiber optic sensors for selective acetone detection in various non-invasive applications.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101322"},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cage-like micro-scaffolds fabricated by DLW method for cell investigation 利用 DLW 方法制作用于细胞研究的笼状微支架
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-11 DOI: 10.1016/j.photonics.2024.101321
A.V. Pisarenko , D.S. Burkatovskii , D.A. Kolymagin , D.A. Chubich , V.I. Borshchevskiy , A.G. Vitukhnovsky
{"title":"Cage-like micro-scaffolds fabricated by DLW method for cell investigation","authors":"A.V. Pisarenko ,&nbsp;D.S. Burkatovskii ,&nbsp;D.A. Kolymagin ,&nbsp;D.A. Chubich ,&nbsp;V.I. Borshchevskiy ,&nbsp;A.G. Vitukhnovsky","doi":"10.1016/j.photonics.2024.101321","DOIUrl":"10.1016/j.photonics.2024.101321","url":null,"abstract":"<div><div>This paper focuses on the use of direct laser writing method in fabricating three-dimensional biocompatible scaffolds that emulate the extracellular matrix. The interaction between HEK 293 cells and these cage-like scaffolds, particularly the effect of pore size on cell invasion, is explored in detail. Our study underscores the influence of scaffold architecture on cellular behavior and highlights the potential of direct laser writing technology in creating complex 3D scaffolds. The insights gleaned from this research could be invaluable in future applications such as tissue engineering, regenerative medicine, and drug delivery.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101321"},"PeriodicalIF":2.5,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional terahertz metamaterial device with switchable properties between transmission and broadband absorption 可在传输和宽带吸收之间切换特性的双功能太赫兹超材料器件
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-09 DOI: 10.1016/j.photonics.2024.101317
Shilin Ma , Xianwu Mi , Xiulong Bian
{"title":"Bifunctional terahertz metamaterial device with switchable properties between transmission and broadband absorption","authors":"Shilin Ma ,&nbsp;Xianwu Mi ,&nbsp;Xiulong Bian","doi":"10.1016/j.photonics.2024.101317","DOIUrl":"10.1016/j.photonics.2024.101317","url":null,"abstract":"<div><div>A bifunctional terahertz metamaterial device with switchable properties between transmission and broadband absorption is proposed. The simulated results show that the switchable functional characteristics of the bifunctional terahertz metamaterial device can be achieved by taking advantage of the phase transition property of VO<sub>2</sub>. When VO<sub>2</sub> is in the insulating state, there are transmission spectra with a maximum transmittance of 90 % and a minimum transmittance of 25 % in the frequency range from 1 THz to 10 THz. Meanwhile, transmission spectra be adjusted by controlling the Fermi level of graphene. When VO<sub>2</sub> is in the fully metal state, the broadband absorptivity achieves over 90 % in the frequency range from 2.54 THz to 7.65 THz. Not only that, the absorption spectra can be continuously adjusted by controlling the conductivity of VO<sub>2</sub> from 20 to 200000 S/m. Alternatively, the proposed bifunctional terahertz metamaterial device can work and show the same absorption spectra when the conductivity of VO<sub>2</sub> is 200000 S/m under TM and TE polarized normal incidences. Our current research work has a potential to provide a valuable reference for the advancement of transmissive and broadband absorbent metamaterial devices in the terahertz range.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101317"},"PeriodicalIF":2.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of a polarization-insensitive terahertz metamaterial absorber for sensing applications 设计和优化用于传感应用的偏振不敏感太赫兹超材料吸收器
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-09 DOI: 10.1016/j.photonics.2024.101314
Neelam Singh , Reshmi Dhara , Sanjeev Yadav
{"title":"Design and optimization of a polarization-insensitive terahertz metamaterial absorber for sensing applications","authors":"Neelam Singh ,&nbsp;Reshmi Dhara ,&nbsp;Sanjeev Yadav","doi":"10.1016/j.photonics.2024.101314","DOIUrl":"10.1016/j.photonics.2024.101314","url":null,"abstract":"<div><div>This study presents dual-band Terahertz (THz) metamaterial absorbers (MA) designed with square resonators for sensing applications. The absorber is made up of a plasmonic ring resonator, a middle polyimide layer, and a lower metal plate, which enhances its absorption capabilities. The position of annular strips and patch units is strategically adjusted to tune and optimize the absorber’s performance precisely. The proposed metamaterial (MA) consistently absorbs over 99 % within the frequency range from 1.4 to 2.8 THz at 1.6 THz for peak-1 and 2.3 THz for peak-2. The peaks labeled as ‘f1’ and ‘f2’ have a spectral width of 0.02 THz and high-quality factors (Q-factors) of 23 for peak-1 and 29 for peak-2, respectively. This makes them remarkably sensitive to variations in the environmental refractive index (RI). It is important to observe that the refractive index of most samples falls within the range of 1.0–2.0, highlighting the potential applications of this sensor.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101314"},"PeriodicalIF":2.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraints on co- and cross-polarization reflection and transmission of Babinet-complementary metasurfaces 巴比内互补元表面的同极化和跨极化反射与透射的约束条件
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-09 DOI: 10.1016/j.photonics.2024.101320
A.G. Zhuravlev , L.M. Pulido-Mancera , A.D. Sayanskiy , V.A. Lenets , S.B. Glybovski , J.D. Baena
{"title":"Constraints on co- and cross-polarization reflection and transmission of Babinet-complementary metasurfaces","authors":"A.G. Zhuravlev ,&nbsp;L.M. Pulido-Mancera ,&nbsp;A.D. Sayanskiy ,&nbsp;V.A. Lenets ,&nbsp;S.B. Glybovski ,&nbsp;J.D. Baena","doi":"10.1016/j.photonics.2024.101320","DOIUrl":"10.1016/j.photonics.2024.101320","url":null,"abstract":"<div><div>A study of constraints on reflection and transmission coefficients for Babinet-complementary metasurfaces is presented in this work. These coefficients have been found to describe circular paths in the complex plane, whose centers and radii are affected by losses. Additionally, it has been shown that it is possible to fully control the cross-polarization coefficients by rotating the metasurface with respect to the polarization direction. Our findings have been verified through numerical simulations and experiments. The properties discussed in this paper could be useful in limiting the types of possible responses of metasurfaces.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101320"},"PeriodicalIF":2.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration CMOS 兼容型等离子体磁场传感器:使用超紧凑 MIM 配置的替代方法
IF 2.5 3区 物理与天体物理
Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-10-05 DOI: 10.1016/j.photonics.2024.101319
Mohammad Ashraful Haque , Rummanur Rahad , Md. Omar Faruque , Abu S.M. Mohsin
{"title":"CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration","authors":"Mohammad Ashraful Haque ,&nbsp;Rummanur Rahad ,&nbsp;Md. Omar Faruque ,&nbsp;Abu S.M. Mohsin","doi":"10.1016/j.photonics.2024.101319","DOIUrl":"10.1016/j.photonics.2024.101319","url":null,"abstract":"<div><div>This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe<sub>3</sub>O<sub>4</sub> magnetic fluid. The sensor uses titanium nitride (<em>TiN</em>) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and <em>TiN</em> to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10<sup>−4</sup> Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101319"},"PeriodicalIF":2.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信