{"title":"Optical response of Au/n-Si schottky photodiode with an interface of graphite-Er2O3-doped polyvinyl alcohol (PVA) nanocomposite","authors":"Ferhat Hanife , Yosef Badali","doi":"10.1016/j.photonics.2025.101446","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the photoconductive properties of a Schottky photodiode with the structure Au/PVA:Graphite-Er₂O₃/n-Si are investigated both in the dark and under varying light intensities. A thin layer of the polyvinyl alcohol doped with Graphite-Er₂O₃ is placed at the metal-semiconductor interface to create an Schottky photodiode with a metal-nanocomposite-semiconductor structure. The fabrication and preparation techniques are thoroughly documented. X-ray diffraction (XRD) is used to analyze the Graphite and Er₂O₃ nanostructures. Several key photoconductive properties, such as leakage or reverse-saturation current (<em>I₀</em>), electric potential barrier height (<em>Φ</em><sub><em>B0</em></sub>), and ideality factor (<em>n</em>), series/shunt resistances (<em>R</em><sub><em>s</em></sub><em>/R</em><sub><em>sh</em></sub>), surface/interface state density distribution (N<sub>ss</sub>), photocurrent (<em>I</em><sub><em>ph</em></sub>), photosensitivity (<em>S</em>), optical responsivity (<em>R</em>), and specific detectivity (<em>D*</em>) have been determined. Increasing light intensity leads to higher <em>I₀</em> and n values, and lower <em>Φ</em><sub><em>B0</em></sub> and <em>R</em><sub><em>s</em></sub> values. When studying the illumination dependency of photocurrent, the <em>I</em><sub><em>ph</em></sub>–<em>P</em> plots at zero bias voltage exhibit a linear behavior within an acceptable range. The PVA:Graphite-Er₂O₃ nanocomposite enhances the photosensitivity of the metal-nanocomposite-semiconductor type photodiode, optical responsivity, and specific detectivity by 1120, 2.40 mA/W, and 3.13 × 10 ¹ ⁰ Jones, respectively. These results suggest that the Au/PVA:Graphite-Er₂O₃/n-Si structure exhibits a promising photoresponse and could potentially replace traditional metal-semiconductor photodiode in optoelectronic devices and photovoltaic systems.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101446"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000963","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the photoconductive properties of a Schottky photodiode with the structure Au/PVA:Graphite-Er₂O₃/n-Si are investigated both in the dark and under varying light intensities. A thin layer of the polyvinyl alcohol doped with Graphite-Er₂O₃ is placed at the metal-semiconductor interface to create an Schottky photodiode with a metal-nanocomposite-semiconductor structure. The fabrication and preparation techniques are thoroughly documented. X-ray diffraction (XRD) is used to analyze the Graphite and Er₂O₃ nanostructures. Several key photoconductive properties, such as leakage or reverse-saturation current (I₀), electric potential barrier height (ΦB0), and ideality factor (n), series/shunt resistances (Rs/Rsh), surface/interface state density distribution (Nss), photocurrent (Iph), photosensitivity (S), optical responsivity (R), and specific detectivity (D*) have been determined. Increasing light intensity leads to higher I₀ and n values, and lower ΦB0 and Rs values. When studying the illumination dependency of photocurrent, the Iph–P plots at zero bias voltage exhibit a linear behavior within an acceptable range. The PVA:Graphite-Er₂O₃ nanocomposite enhances the photosensitivity of the metal-nanocomposite-semiconductor type photodiode, optical responsivity, and specific detectivity by 1120, 2.40 mA/W, and 3.13 × 10 ¹ ⁰ Jones, respectively. These results suggest that the Au/PVA:Graphite-Er₂O₃/n-Si structure exhibits a promising photoresponse and could potentially replace traditional metal-semiconductor photodiode in optoelectronic devices and photovoltaic systems.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.