Yun Fang , Jian Liu , Weiyu Chen , Fangjiaming Zhao , Xue Zhang , Dandan Wang , Wanchun Yang
{"title":"基于石墨烯和钛环嵌入结构的双频MWIR和宽带LWIR完美吸收体","authors":"Yun Fang , Jian Liu , Weiyu Chen , Fangjiaming Zhao , Xue Zhang , Dandan Wang , Wanchun Yang","doi":"10.1016/j.photonics.2025.101444","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a dual-band mid-wave infrared (MWIR: 3–<span><math><mrow><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and tunable broadband long-wave infrared (LWIR: 8–<span><math><mrow><mn>14</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub>, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at <span><math><mi>λ</mi></math></span> <sub>1</sub> = <span><math><mrow><mn>3</mn><mo>.</mo><mn>23</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.80%) and <span><math><mi>λ</mi></math></span> <sub>2</sub> = <span><math><mrow><mn>4</mn><mo>.</mo><mn>13</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—<span><math><mrow><mn>14</mn><mo>.</mo><mn>17</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101444"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-band MWIR and broadband LWIR perfect absorber based on graphene and Ti rings embedded structure\",\"authors\":\"Yun Fang , Jian Liu , Weiyu Chen , Fangjiaming Zhao , Xue Zhang , Dandan Wang , Wanchun Yang\",\"doi\":\"10.1016/j.photonics.2025.101444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a dual-band mid-wave infrared (MWIR: 3–<span><math><mrow><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and tunable broadband long-wave infrared (LWIR: 8–<span><math><mrow><mn>14</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub>, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at <span><math><mi>λ</mi></math></span> <sub>1</sub> = <span><math><mrow><mn>3</mn><mo>.</mo><mn>23</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.80%) and <span><math><mi>λ</mi></math></span> <sub>2</sub> = <span><math><mrow><mn>4</mn><mo>.</mo><mn>13</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—<span><math><mrow><mn>14</mn><mo>.</mo><mn>17</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"66 \",\"pages\":\"Article 101444\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156944102500094X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102500094X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-band MWIR and broadband LWIR perfect absorber based on graphene and Ti rings embedded structure
This paper proposes a dual-band mid-wave infrared (MWIR: 3–) and tunable broadband long-wave infrared (LWIR: 8–) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si3N4, Al2O3, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at 1 = (99.80%) and 2 = (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.