基于石墨烯和钛环嵌入结构的双频MWIR和宽带LWIR完美吸收体

IF 2.9 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yun Fang , Jian Liu , Weiyu Chen , Fangjiaming Zhao , Xue Zhang , Dandan Wang , Wanchun Yang
{"title":"基于石墨烯和钛环嵌入结构的双频MWIR和宽带LWIR完美吸收体","authors":"Yun Fang ,&nbsp;Jian Liu ,&nbsp;Weiyu Chen ,&nbsp;Fangjiaming Zhao ,&nbsp;Xue Zhang ,&nbsp;Dandan Wang ,&nbsp;Wanchun Yang","doi":"10.1016/j.photonics.2025.101444","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a dual-band mid-wave infrared (MWIR: 3–<span><math><mrow><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and tunable broadband long-wave infrared (LWIR: 8–<span><math><mrow><mn>14</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub>, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at <span><math><mi>λ</mi></math></span> <sub>1</sub> = <span><math><mrow><mn>3</mn><mo>.</mo><mn>23</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.80%) and <span><math><mi>λ</mi></math></span> <sub>2</sub> = <span><math><mrow><mn>4</mn><mo>.</mo><mn>13</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—<span><math><mrow><mn>14</mn><mo>.</mo><mn>17</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101444"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-band MWIR and broadband LWIR perfect absorber based on graphene and Ti rings embedded structure\",\"authors\":\"Yun Fang ,&nbsp;Jian Liu ,&nbsp;Weiyu Chen ,&nbsp;Fangjiaming Zhao ,&nbsp;Xue Zhang ,&nbsp;Dandan Wang ,&nbsp;Wanchun Yang\",\"doi\":\"10.1016/j.photonics.2025.101444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a dual-band mid-wave infrared (MWIR: 3–<span><math><mrow><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) and tunable broadband long-wave infrared (LWIR: 8–<span><math><mrow><mn>14</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si<sub>3</sub>N<sub>4</sub>, Al<sub>2</sub>O<sub>3</sub>, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at <span><math><mi>λ</mi></math></span> <sub>1</sub> = <span><math><mrow><mn>3</mn><mo>.</mo><mn>23</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.80%) and <span><math><mi>λ</mi></math></span> <sub>2</sub> = <span><math><mrow><mn>4</mn><mo>.</mo><mn>13</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—<span><math><mrow><mn>14</mn><mo>.</mo><mn>17</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"66 \",\"pages\":\"Article 101444\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156944102500094X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102500094X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于内嵌Ti环和石墨烯的双波段中波红外(MWIR: 3-5μm)和可调谐宽带长波红外(LWIR: 8-14μm)完美吸收体。吸收体由石墨烯顶层、氮化硅、氧化铝和硅的介电层组成,在硅层中嵌入四个钛环和一个十字形石墨烯图案,所有这些都由Ti衬底支撑。结果表明,在MWIR范围内,λ 1 = 3.23μm(99.80%)和λ 2 = 4.13μm(99.53%)处存在两个接近完美的吸收峰。在6.67 ~ 14.17μm范围内实现了超过90%的宽带吸收,在LWIR窗口内的平均吸收率为96.3%。宽带性能源于多层介质堆叠中的协同法布里- psamro (F-P)共振和由Ti和石墨烯混合结构实现的表面等离子体共振(SPR),与之前报道的设计相比,这使得所提出的结构具有更宽的带宽和更优越的吸收能力。该吸收体具有宽带运行、高吸收率和高稳定性等优点,在红外热成像、红外隐身和红外探测方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-band MWIR and broadband LWIR perfect absorber based on graphene and Ti rings embedded structure
This paper proposes a dual-band mid-wave infrared (MWIR: 3–5μm) and tunable broadband long-wave infrared (LWIR: 8–14μm) perfect absorber based on embedded Ti rings and graphene. The absorber consists of a graphene top layer, dielectric layers of Si3N4, Al2O3, and Si, with four Ti rings and a cross-shaped graphene pattern embedded in the Si layer, all supported by a Ti substrate. The numerical results indicate that two near-perfect absorption peaks at λ 1 = 3.23μm (99.80%) and λ 2 = 4.13μm (99.53%) within the MWIR range. Broadband absorption exceeding 90% is achieved across 6.67—14.17μm, with an average absorption of 96.3% over the LWIR window. The broadband performance originates from synergistic Fabry-Pérot(F-P) resonances in the multilayer dielectric stack and surface plasmon resonances (SPR) enabled by the Ti and graphene hybrid configuration, which endows the proposed structure with a broader bandwidth and superior absorption capability compared to previously reported designs. With advantages including broadband operation, high absorption, and high stability, the proposed absorber holds significant potential for infrared thermal imaging, infrared stealth and detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信