Giant enhancement of the Goos-Hänchen shift by hyperbolic shear polaritons with beta-phase Ga2O3 in the mid-infrared spectrum

IF 2.9 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lu Yang, Xiongwen Chen, Chang Liu, Wang Zeng, Xinwu Liu, Zihao Liu
{"title":"Giant enhancement of the Goos-Hänchen shift by hyperbolic shear polaritons with beta-phase Ga2O3 in the mid-infrared spectrum","authors":"Lu Yang,&nbsp;Xiongwen Chen,&nbsp;Chang Liu,&nbsp;Wang Zeng,&nbsp;Xinwu Liu,&nbsp;Zihao Liu","doi":"10.1016/j.photonics.2025.101453","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we theoretically investigate the Goos-Hänchen (GH) shift in an Otto configuration based on beta-phase Ga₂O₃ (bGO). The study shows that when TM-polarized light is incident, hyperbolic shear polaritons (HShPs) can induce a significant GH shift in the mid-infrared range. The significant GH shift in reflection is caused by local phase changes at the interface, which result from the excitation of HShPs. The magnitude and sign of the GH shift vary with device rotation and air gap thickness. By selecting appropriate air gap thickness and angle of incidence, a GH shift up to <span><math><mrow><mn>2000</mn><mspace></mspace><mi>λ</mi></mrow></math></span> can be achieved near the angle of incidence where the sign changes. Utilizing the tunable GH shift, we design an anisotropic refractive index sensor, providing theoretical guidance for potential industrial applications. Furthermore, our results indicate that the tunable GH shift method based on prism coupling has significant potential applications in biosensing, beam alignment, and optical detection.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101453"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025001038","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we theoretically investigate the Goos-Hänchen (GH) shift in an Otto configuration based on beta-phase Ga₂O₃ (bGO). The study shows that when TM-polarized light is incident, hyperbolic shear polaritons (HShPs) can induce a significant GH shift in the mid-infrared range. The significant GH shift in reflection is caused by local phase changes at the interface, which result from the excitation of HShPs. The magnitude and sign of the GH shift vary with device rotation and air gap thickness. By selecting appropriate air gap thickness and angle of incidence, a GH shift up to 2000λ can be achieved near the angle of incidence where the sign changes. Utilizing the tunable GH shift, we design an anisotropic refractive index sensor, providing theoretical guidance for potential industrial applications. Furthermore, our results indicate that the tunable GH shift method based on prism coupling has significant potential applications in biosensing, beam alignment, and optical detection.
β相Ga2O3在中红外光谱中双曲剪切极化子对Goos-Hänchen位移的显著增强
在本文中,我们从理论上研究了基于β相Ga₂O₃(bGO)的Otto构型中的Goos-Hänchen (GH)移位。研究表明,当tm偏振光入射时,双曲剪切极化子(HShPs)可以在中红外范围内引起明显的GH位移。反射中显著的GH位移是由界面处的局部相位变化引起的,这是由HShPs激发引起的。GH位移的大小和符号随器件旋转和气隙厚度的变化而变化。通过选择合适的气隙厚度和入射角,可以在符号变化的入射角附近实现高达2000λ的GH位移。利用可调的GH位移,我们设计了一个各向异性折射率传感器,为潜在的工业应用提供了理论指导。此外,我们的研究结果表明,基于棱镜耦合的可调谐GH位移方法在生物传感、光束对准和光学检测方面具有重要的潜在应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信