{"title":"具有高Q因子和高力学-光学耦合系数的gaas - su8光子晶体的拓扑性质","authors":"Hanbo Shao, XiaoChen Hang, Dong Jiang","doi":"10.1016/j.photonics.2025.101435","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a two-dimensional GaAs-SU8-Based (SU8 photoresist is a high-contrast epoxy negative photoresist) phoxonic crystal to simultaneously exhibit topological characteristic of electromagnetic and elastic waves. By rotating the angle of SU8 holes with respect to the center of the regular hexagon, diarc cone degeneracy occurs at both photonic and phononic bandgap, accompanied by band flipping. Further, the topological transmission and robustness is verified by design three different interface channels with a 30°/-30° flip. We investigate the <em>Q</em> factor of both mechanics and optics in this topological system, when the ratio n = 0.2 (radius r to the lattice constant a) and a= 340μm, <em>Q</em><sub>photonic</sub> and <em>Q</em><sub>phononic</sub> achieve highest, equal to 6432 and 2508, respectively. At this time, the mechanics-optics coupling in the phoxonic cavity reaches its maximum, g<sub>mb</sub>= 1024 Hz, g<sub>pe</sub>= 75.2 Hz and g= 1099.2 Hz. (g<sub>mb</sub> means the moving interface effect; g<sub>pe</sub> means the photoelastic effect, and g means the The mechanics-optics coupling coefficient) The propose PxCs realize highly topologically protected and robust characteristics with the effect of maintaining high optical force coupling rate. Providing a model reference for the design of mechanic-optic functional devices such as liquid concentration sensor, mass sensor and micro-displacement sensor.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"66 ","pages":"Article 101435"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological properties in a GaAs-SU8-Based phoxonic crystal with high Q factor and mechanics-optics coupling coefficient\",\"authors\":\"Hanbo Shao, XiaoChen Hang, Dong Jiang\",\"doi\":\"10.1016/j.photonics.2025.101435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a two-dimensional GaAs-SU8-Based (SU8 photoresist is a high-contrast epoxy negative photoresist) phoxonic crystal to simultaneously exhibit topological characteristic of electromagnetic and elastic waves. By rotating the angle of SU8 holes with respect to the center of the regular hexagon, diarc cone degeneracy occurs at both photonic and phononic bandgap, accompanied by band flipping. Further, the topological transmission and robustness is verified by design three different interface channels with a 30°/-30° flip. We investigate the <em>Q</em> factor of both mechanics and optics in this topological system, when the ratio n = 0.2 (radius r to the lattice constant a) and a= 340μm, <em>Q</em><sub>photonic</sub> and <em>Q</em><sub>phononic</sub> achieve highest, equal to 6432 and 2508, respectively. At this time, the mechanics-optics coupling in the phoxonic cavity reaches its maximum, g<sub>mb</sub>= 1024 Hz, g<sub>pe</sub>= 75.2 Hz and g= 1099.2 Hz. (g<sub>mb</sub> means the moving interface effect; g<sub>pe</sub> means the photoelastic effect, and g means the The mechanics-optics coupling coefficient) The propose PxCs realize highly topologically protected and robust characteristics with the effect of maintaining high optical force coupling rate. Providing a model reference for the design of mechanic-optic functional devices such as liquid concentration sensor, mass sensor and micro-displacement sensor.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"66 \",\"pages\":\"Article 101435\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441025000859\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000859","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological properties in a GaAs-SU8-Based phoxonic crystal with high Q factor and mechanics-optics coupling coefficient
We propose a two-dimensional GaAs-SU8-Based (SU8 photoresist is a high-contrast epoxy negative photoresist) phoxonic crystal to simultaneously exhibit topological characteristic of electromagnetic and elastic waves. By rotating the angle of SU8 holes with respect to the center of the regular hexagon, diarc cone degeneracy occurs at both photonic and phononic bandgap, accompanied by band flipping. Further, the topological transmission and robustness is verified by design three different interface channels with a 30°/-30° flip. We investigate the Q factor of both mechanics and optics in this topological system, when the ratio n = 0.2 (radius r to the lattice constant a) and a= 340μm, Qphotonic and Qphononic achieve highest, equal to 6432 and 2508, respectively. At this time, the mechanics-optics coupling in the phoxonic cavity reaches its maximum, gmb= 1024 Hz, gpe= 75.2 Hz and g= 1099.2 Hz. (gmb means the moving interface effect; gpe means the photoelastic effect, and g means the The mechanics-optics coupling coefficient) The propose PxCs realize highly topologically protected and robust characteristics with the effect of maintaining high optical force coupling rate. Providing a model reference for the design of mechanic-optic functional devices such as liquid concentration sensor, mass sensor and micro-displacement sensor.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.