Thermal light emitters based on graphene directly grown on chips by etching-precipitation method

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yui Shimura , Shinichiro Matano , Jumpei Yamada , Suguru Noda , Hideyuki Maki
{"title":"Thermal light emitters based on graphene directly grown on chips by etching-precipitation method","authors":"Yui Shimura ,&nbsp;Shinichiro Matano ,&nbsp;Jumpei Yamada ,&nbsp;Suguru Noda ,&nbsp;Hideyuki Maki","doi":"10.1016/j.photonics.2025.101400","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene has been actively explored for on-chip nanoscale light sources, due to its small size, high brightness and fast-modulating blackbody radiation sources. However, the productivity problem is that the fabrication processes require a transfer process when mechanically exfoliated or chemical vapor deposited graphene are used, resulting in low productivity and degradation of graphene quality. Here, we fabricated a graphene-based thermal light emitter by using an etching-precipitation method that does not require the transfer process. Infrared and visible light emission was observed from the central constricted area, forming a hot spot. Raman measurements confirmed that defect healing occurred in the central hot spot of graphene due to the annealing effect caused by Joule heating. We also demonstrated that the device has long-term luminescence stability. This light emitter provides a promising avenue for the advancement of on-chip graphene light emitters.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101400"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000501","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene has been actively explored for on-chip nanoscale light sources, due to its small size, high brightness and fast-modulating blackbody radiation sources. However, the productivity problem is that the fabrication processes require a transfer process when mechanically exfoliated or chemical vapor deposited graphene are used, resulting in low productivity and degradation of graphene quality. Here, we fabricated a graphene-based thermal light emitter by using an etching-precipitation method that does not require the transfer process. Infrared and visible light emission was observed from the central constricted area, forming a hot spot. Raman measurements confirmed that defect healing occurred in the central hot spot of graphene due to the annealing effect caused by Joule heating. We also demonstrated that the device has long-term luminescence stability. This light emitter provides a promising avenue for the advancement of on-chip graphene light emitters.
采用蚀刻-沉淀法直接在芯片上生长的基于石墨烯的热发光器件
石墨烯具有体积小、亮度高、黑体辐射源快速调制等优点,被广泛用于片上纳米级光源的研究。然而,生产效率的问题是,当使用机械剥离或化学气相沉积石墨烯时,制造过程需要一个转移过程,导致生产效率低,石墨烯质量下降。在这里,我们使用不需要转移过程的蚀刻-沉淀方法制造了基于石墨烯的热光发射器。从中心收缩区域观测到红外和可见光发射,形成一个热点。拉曼测量证实,由于焦耳加热引起的退火效应,石墨烯的中心热点发生了缺陷愈合。我们还证明了该器件具有长期的发光稳定性。这种光发射器为片上石墨烯光发射器的发展提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信