Investigation of nonlinear optical properties in GaAs/GaAlAs quantum well with modified Lennard-Jones potential: Role of static electromagnetic fields, intense laser radiation and structure parameters
IF 2.9 3区 物理与天体物理Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. Hasanirokh , E.B. AL , A.T. Tuzemen , M. Sayrac , H. Sayrac , F. Ungan
{"title":"Investigation of nonlinear optical properties in GaAs/GaAlAs quantum well with modified Lennard-Jones potential: Role of static electromagnetic fields, intense laser radiation and structure parameters","authors":"K. Hasanirokh , E.B. AL , A.T. Tuzemen , M. Sayrac , H. Sayrac , F. Ungan","doi":"10.1016/j.photonics.2025.101403","DOIUrl":null,"url":null,"abstract":"<div><div>Through this theoretical investigation, we examine the role of various factors (electric field, magnetic field and intense laser field) on GaAs/GaAlAs quantum well with modified Lennard-Jones potential and their influence on the nonlinear optical rectification, second harmonic generation, and third harmonic generation. First, we calculate the wave functions and energy levels for the four lowest confined states in the structure by solving the Schrödinger equation via the diagonalization method in the framework of the effective mass and parabolic band approximations. The optical calculations utilize the density matrix formalism and the iterative method to express the different degrees of dielectric susceptibility. The intense laser effects on the system are calculated via the Floquet method, which modifies the confinement potential due to the heterostructure. The major outcomes of this quantitative research demonstrate a strong dependence between the mentioned parameters and optical properties. Magnetic field, electric field, intense laser field and potential change drastically the energy levels and matrix elements and thus modifies the optical characteristics. By appropriately manipulating the variables we can not only regulate the optical properties of the quantum well but also help developers in the creation of novel optoelectronic devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101403"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000537","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Through this theoretical investigation, we examine the role of various factors (electric field, magnetic field and intense laser field) on GaAs/GaAlAs quantum well with modified Lennard-Jones potential and their influence on the nonlinear optical rectification, second harmonic generation, and third harmonic generation. First, we calculate the wave functions and energy levels for the four lowest confined states in the structure by solving the Schrödinger equation via the diagonalization method in the framework of the effective mass and parabolic band approximations. The optical calculations utilize the density matrix formalism and the iterative method to express the different degrees of dielectric susceptibility. The intense laser effects on the system are calculated via the Floquet method, which modifies the confinement potential due to the heterostructure. The major outcomes of this quantitative research demonstrate a strong dependence between the mentioned parameters and optical properties. Magnetic field, electric field, intense laser field and potential change drastically the energy levels and matrix elements and thus modifies the optical characteristics. By appropriately manipulating the variables we can not only regulate the optical properties of the quantum well but also help developers in the creation of novel optoelectronic devices.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.