Ying Cui, Xueyan Han, Jianguo Lei, Aohan Zhang, Xiaozhe Lu
{"title":"Dual-functional reconfigurable metasurface for reversible circular and linear dichroism","authors":"Ying Cui, Xueyan Han, Jianguo Lei, Aohan Zhang, Xiaozhe Lu","doi":"10.1016/j.photonics.2025.101407","DOIUrl":null,"url":null,"abstract":"<div><div>Dual-functional dichroic devices hold great potential applications in optical integrated systems, but most chiral devices are designed for a specific function of circular or linear dichroism (CD or LD). Herein, we numerically demonstrated a dichroic metasurface with giant and reversible CD and LD simultaneously by controlling the phase transition of Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub>(GSST) in a U-shaped array. By changing the symmetry of the structure via dynamically controlling the states of GSST inclusions, the maximum tuning ranges of CD of −0.89 to 0.89 and LD of −0.85 to 0.92 are achieved in the near-infrared (NIR) band. Theoretical analysis shows that the giant CD originates from the circular polarization selective excitations of magnetic dipole-electric quadrupole (MD-EQ) resonance, and the dual-band LD originates from the linear polarization selective excitations of MD-EQ and toroidal dipole (TD) resonances. To our knowledge, this is the first NIR metasurface capable of large-range switchable CD and LD simultaneously, which may provide new ideas for the design of polarization integrated devices.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"65 ","pages":"Article 101407"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000574","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-functional dichroic devices hold great potential applications in optical integrated systems, but most chiral devices are designed for a specific function of circular or linear dichroism (CD or LD). Herein, we numerically demonstrated a dichroic metasurface with giant and reversible CD and LD simultaneously by controlling the phase transition of Ge2Sb2Se4Te1(GSST) in a U-shaped array. By changing the symmetry of the structure via dynamically controlling the states of GSST inclusions, the maximum tuning ranges of CD of −0.89 to 0.89 and LD of −0.85 to 0.92 are achieved in the near-infrared (NIR) band. Theoretical analysis shows that the giant CD originates from the circular polarization selective excitations of magnetic dipole-electric quadrupole (MD-EQ) resonance, and the dual-band LD originates from the linear polarization selective excitations of MD-EQ and toroidal dipole (TD) resonances. To our knowledge, this is the first NIR metasurface capable of large-range switchable CD and LD simultaneously, which may provide new ideas for the design of polarization integrated devices.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.