Biometals最新文献

筛选
英文 中文
Correlation between biomedical and structural properties of Zn/Sr modified calcium phosphates Zn/Sr 改性磷酸钙的生物医学特性与结构特性之间的相关性。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-28 DOI: 10.1007/s10534-024-00599-w
Atipong Bootchanont, Natthaphon Chaosuan, Sasina Promdee, Jantima Teeka, Pinit Kidkhunthod, Rattikorn Yimnirun, Wutthigrai Sailuam, Nutthaporn Isran, Arreerat Jiamprasertboon, Theeranun Siritanon, Tanachat Eknapakul, Thanit Saisopa
{"title":"Correlation between biomedical and structural properties of Zn/Sr modified calcium phosphates","authors":"Atipong Bootchanont,&nbsp;Natthaphon Chaosuan,&nbsp;Sasina Promdee,&nbsp;Jantima Teeka,&nbsp;Pinit Kidkhunthod,&nbsp;Rattikorn Yimnirun,&nbsp;Wutthigrai Sailuam,&nbsp;Nutthaporn Isran,&nbsp;Arreerat Jiamprasertboon,&nbsp;Theeranun Siritanon,&nbsp;Tanachat Eknapakul,&nbsp;Thanit Saisopa","doi":"10.1007/s10534-024-00599-w","DOIUrl":"10.1007/s10534-024-00599-w","url":null,"abstract":"<div><p>This study investigates the correlation between the biomedical and structural properties of Zn/Sr-modified Calcium Phosphates (ZnSr–CaPs) synthesized via the sol–gel combustion method. X-ray diffraction (XRD) analysis revealed the presence of Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> (HAp), CaCO<sub>3</sub>, and Ca(OH)<sub>2</sub> phases in the undoped sample, while the additional phase, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> (β-TCP) was formed in modified samples. X-ray absorption near-edge structure (XANES) analysis demonstrated the incorporation of Sr into the lattice, with a preference for occupying the Ca1 sites in the HAp matrix. The introduction of Zn, furthermore, led to the formation of ZnO and CaZnO<sub>2</sub> species. The ZnSr–CaPs exhibited significant antibacterial activity attributed to the generation of reactive oxygen species by ZnO, the oxidation reaction of CaZnO<sub>2</sub>, and the presence of Sr ions. Cytotoxicity tests revealed a correlation between the variation in ZnO content and cellular viability, with lower ZnO concentrations corresponding to higher cell viability. Additionally, the cooperative effects of Zn and Sr ions were found to enhance the bioactivity of CaPs, despite ZnO hindering the apatite formation process. These findings contribute to the deep understanding of the diverse role in modulating the antibacterial, cytotoxic, and bioactive properties of ZnSr–CaPs, offering potential applications in the field of biomaterials.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1177 - 1189"},"PeriodicalIF":4.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordination of bioactive phytochemicals from Aloe vera extracts to metal ions; investigation of the metal complexes and bioactive compound formed 芦荟提取物中具有生物活性的植物化学物质与金属离子的配位;研究金属络合物和形成的生物活性化合物。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-25 DOI: 10.1007/s10534-024-00611-3
Great Iruoghene Edo
{"title":"Coordination of bioactive phytochemicals from Aloe vera extracts to metal ions; investigation of the metal complexes and bioactive compound formed","authors":"Great Iruoghene Edo","doi":"10.1007/s10534-024-00611-3","DOIUrl":"10.1007/s10534-024-00611-3","url":null,"abstract":"<div><p>The bioactive compounds contained within many plants account for their pharmacological values. <i>Aloe vera</i> has a wide range of organic and inorganic components, including carbohydrate polymers, glucomannans, and a variety of other natural and synthetic materials. The study aims to take a look into the characteristics of some metal complexes produced from <i>Aloe vera</i> extracts. The extracts from <i>Aloe vera</i> were derived by means of acetone, distilled water and ethanol. The solubility of the metal complexes with the ligand at varying temperatures was established. FT-IR was used to carry out the infra-red examination of the ligand. The results revealed that alcoholic extract of <i>Aloe vera</i> leaf was not soluble in Cu, Fe, or Zn but only soluble in Fe, the extract by distilled water was soluble in Cu, Fe and Zn. However, the <i>Aloe vera</i> in acetone as well as in the Zn (II) and Cu (II) composites displayed a bending that was found at 1430.97 cm<sup>−1</sup>, 1500.01 cm<sup>−1</sup> and 1615.90 cm<sup>−1</sup>.every functional groups are assigned to be coordinating sites as a result of increase or decrease in the wave number, and absorption band. Findings from the investigation reveal that the complexion of the metal salts with diverse donor sites in the extract is indicated by an increase in the absorption peak of the functional groups in the metal composites of the extracts.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1379 - 1391"},"PeriodicalIF":4.1,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Research progress of ferroptosis and inflammatory bowel disease 更正为铁蛋白沉积与炎症性肠病的研究进展。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-24 DOI: 10.1007/s10534-024-00614-0
Baolian Ma, Xiaoxue Hu, Xiaowen Ai, Yonglan Zhang
{"title":"Correction to: Research progress of ferroptosis and inflammatory bowel disease","authors":"Baolian Ma,&nbsp;Xiaoxue Hu,&nbsp;Xiaowen Ai,&nbsp;Yonglan Zhang","doi":"10.1007/s10534-024-00614-0","DOIUrl":"10.1007/s10534-024-00614-0","url":null,"abstract":"","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1063 - 1063"},"PeriodicalIF":4.1,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141092759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The iron(III) coordinating properties of citrate and α-hydroxycarboxylate containing siderophores. 含柠檬酸盐和α-羟基羧酸盐的铁(III)配位特性。
IF 3.5 3区 生物学
Biometals Pub Date : 2024-05-21 DOI: 10.1007/s10534-024-00607-z
Robert C Hider, André M N Silva, Agostino Cilibrizzi
{"title":"The iron(III) coordinating properties of citrate and α-hydroxycarboxylate containing siderophores.","authors":"Robert C Hider, André M N Silva, Agostino Cilibrizzi","doi":"10.1007/s10534-024-00607-z","DOIUrl":"https://doi.org/10.1007/s10534-024-00607-z","url":null,"abstract":"<p><p>The iron(III) binding properties of citrate and rhizoferrin, a citrate containing siderophore, are compared. Citrate forms many oligonuclear complexes, whereas rhizoferrin forms a single mononuclear complex. The α-hydroxycarboxylate functional group, which is present in both citrate, and rhizoferrin, has a high affinity and selectivity for iron(III) under most biological conditions. The nature of the toxic form of iron found in the blood of patients suffering from many haemoglobinopathies and haemochromatosis is identified as a mixture of iron(III)citrate complexes. The significance of the presence of this iron pool to patients suffering from systemic iron overload is discussed. The wide utilisation of the α-hydroxycarboxylate functional group in siderophore structures is described, as is their photo-induced decarboxylation leading to the release of iron(II) ions. The importance of this facile dissociation to algal iron uptake is discussed.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress of ferroptosis and inflammatory bowel disease 铁蛋白沉积症与炎症性肠病的研究进展。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-07 DOI: 10.1007/s10534-024-00604-2
Baolian Ma, Xiaoxue Hu, Xiaowen Ai, Yonglan Zhang
{"title":"Research progress of ferroptosis and inflammatory bowel disease","authors":"Baolian Ma,&nbsp;Xiaoxue Hu,&nbsp;Xiaowen Ai,&nbsp;Yonglan Zhang","doi":"10.1007/s10534-024-00604-2","DOIUrl":"10.1007/s10534-024-00604-2","url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1039 - 1062"},"PeriodicalIF":4.1,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity 不断变化的环境中金属和类金属对全球构成的威胁:采用 "同一健康 "方法研究毒性机制。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-06 DOI: 10.1007/s10534-024-00606-0
Wing-Kee Lee, Frank Thévenod, Elmar J. Prenner
{"title":"Global threat posed by metals and metalloids in the changing environment: a One Health approach to mechanisms of toxicity","authors":"Wing-Kee Lee,&nbsp;Frank Thévenod,&nbsp;Elmar J. Prenner","doi":"10.1007/s10534-024-00606-0","DOIUrl":"10.1007/s10534-024-00606-0","url":null,"abstract":"","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 3","pages":"539 - 544"},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens 纳米药物:与氧化锌共轭的帕图雷汀对革兰氏阴性和革兰氏阳性细菌病原体具有强效作用。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-06 DOI: 10.1007/s10534-024-00595-0
Naveed Ahmed Khan, Adeelah Alvi, Saif Alqassim, Noor Akbar, Bushra Khatoon, Muhammad Kawish, Shaheen Faizi, Muhammad Raza Shah, Bader S. Alawfi, Ruqaiyyah Siddiqui
{"title":"Nanomedicine: Patuletin-conjugated with zinc oxide exhibit potent effects against Gram-negative and Gram-positive bacterial pathogens","authors":"Naveed Ahmed Khan,&nbsp;Adeelah Alvi,&nbsp;Saif Alqassim,&nbsp;Noor Akbar,&nbsp;Bushra Khatoon,&nbsp;Muhammad Kawish,&nbsp;Shaheen Faizi,&nbsp;Muhammad Raza Shah,&nbsp;Bader S. Alawfi,&nbsp;Ruqaiyyah Siddiqui","doi":"10.1007/s10534-024-00595-0","DOIUrl":"10.1007/s10534-024-00595-0","url":null,"abstract":"<div><p>With the emergence of drug-resistance, there is a need for novel anti-bacterials or to enhance the efficacy of existing drugs. In this study, Patuletin (PA), a flavanoid was loaded onto Gallic acid modified Zinc oxide nanoparticles (PA-GA-ZnO), and evaluated for antibacterial properties against Gram-positive (<i>Bacillus cereus</i> and <i>Streptococcus pneumoniae</i>) and Gram-negative (<i>Samonella enterica</i> and <i>Escherichia coli</i>) bacteria. Characterization of PA, GA-ZnO and PA-GA-ZnO’ nanoparticles was accomplished utilizing fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology analysis through atomic force microscopy. Using bactericidal assays, the results revealed that ZnO conjugation displayed remarkable effects and enhanced Patuletin’s effects against both Gram-positive and Gram-negative bacteria, with the minimum inhibitory concentration observed at micromolar concentrations. Cytopathogenicity assays exhibited that the drug-nanoconjugates reduced bacterial-mediated human cell death with minimal side effects to human cells. When tested alone, drug-nanoconjugates tested in this study showed limited toxic effects against human cells in vitro. These are promising findings, but future work is needed to understand the molecular mechanisms of effects of drug-nanoconjugates against bacterial pathogens, in addition to in vivo testing to determine their translational value. This study suggests that Patuletin-loaded nano-formulation (PA-GA-ZnO) may be implicated in a multi-target mechanism that affects both Gram-positive and Gram-negative pathogen cell structures, however this needs to be ascertained in future work.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1113 - 1125"},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights on the endogenous labile iron pool binding properties 洞察内源性易溶铁池的结合特性
IF 4.1 3区 生物学
Biometals Pub Date : 2024-05-01 DOI: 10.1007/s10534-024-00591-4
André Luís Condeles, Gabriel Simonetti da Silva, Maria Beatriz Braghetto Hernandes, José Carlos Toledo Junior
{"title":"Insights on the endogenous labile iron pool binding properties","authors":"André Luís Condeles,&nbsp;Gabriel Simonetti da Silva,&nbsp;Maria Beatriz Braghetto Hernandes,&nbsp;José Carlos Toledo Junior","doi":"10.1007/s10534-024-00591-4","DOIUrl":"10.1007/s10534-024-00591-4","url":null,"abstract":"<div><p>Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIP<sub>T</sub>) and C (C<sub>T</sub>) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10<sup>−2</sup> µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1065 - 1077"},"PeriodicalIF":4.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Acanthamoeba metallopharmaceuticals: Amoebicidal activity and synergistic effect of copper(II) coordination compound 抗阿卡他米巴金属药物:铜(II)配位化合物的阿米巴杀虫活性和协同效应。
IF 4.1 3区 生物学
Biometals Pub Date : 2024-04-22 DOI: 10.1007/s10534-024-00602-4
Jaqueline da Silveira, Ana Paula Cardoso, Christiane Fernandes, Adolfo Horn Junior, Gabriella da Rosa Monte Machado, Karin Silva Caumo
{"title":"Anti-Acanthamoeba metallopharmaceuticals: Amoebicidal activity and synergistic effect of copper(II) coordination compound","authors":"Jaqueline da Silveira,&nbsp;Ana Paula Cardoso,&nbsp;Christiane Fernandes,&nbsp;Adolfo Horn Junior,&nbsp;Gabriella da Rosa Monte Machado,&nbsp;Karin Silva Caumo","doi":"10.1007/s10534-024-00602-4","DOIUrl":"10.1007/s10534-024-00602-4","url":null,"abstract":"<div><p><i>Acanthamoeba</i> spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against <i>Acanthamoeba castellanii</i> trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC—CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC<sub>50</sub>) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against <i>Acanthamoeba</i> keratitis and its use in multipurpose solutions is highlighted.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1225 - 1236"},"PeriodicalIF":4.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population 环境中微量元素暴露与儿童早期肾损伤生物标志物之间的关系
IF 4.1 3区 生物学
Biometals Pub Date : 2024-04-20 DOI: 10.1007/s10534-024-00603-3
Manolo Ortega-Romero, Elodia Rojas-Lima, Juan Carlos Rubio-Gutiérrez, Octavio Gamaliel Aztatzi-Aguilar, Juana Narváez-Morales, Mariela Esparza-García, Ángel Barrera-Hernández, Miguel Ángel Mejia, Pablo Mendez-Hernández, Mara Medeiros, Olivier Christophe Barbier
{"title":"Associations among environmental exposure to trace elements and biomarkers of early kidney damage in the pediatric population","authors":"Manolo Ortega-Romero,&nbsp;Elodia Rojas-Lima,&nbsp;Juan Carlos Rubio-Gutiérrez,&nbsp;Octavio Gamaliel Aztatzi-Aguilar,&nbsp;Juana Narváez-Morales,&nbsp;Mariela Esparza-García,&nbsp;Ángel Barrera-Hernández,&nbsp;Miguel Ángel Mejia,&nbsp;Pablo Mendez-Hernández,&nbsp;Mara Medeiros,&nbsp;Olivier Christophe Barbier","doi":"10.1007/s10534-024-00603-3","DOIUrl":"10.1007/s10534-024-00603-3","url":null,"abstract":"<div><h3>Background</h3><p>In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population.</p><h3>Methods</h3><p>In Tlaxcala, a cross-sectional study was conducted on 914 healthy individuals. The participants underwent a medical review and a socio-environmental questionnaire. Five early damage kidney biomarkers were determined in the urine with Luminex, and molybdenum, copper, selenium, nickel, and iodine were measured with ICP-Mass.</p><h3>Results</h3><p>The eGFR showed a median of 103.75 mL/min/1.73 m2. The median levels for molybdenum, copper, selenium, nickel, and iodine were 24.73 ng/mL, 73.35 ng/mL, 4.78 ng/mL, 83.68 ng/mL, and 361.83 ng/mL, respectively. Except for molybdenum and nickel, the other trace elements had significant associations with the eGFR and the early kidney damage biomarkers. Additionally, we report the association of different exposure scenarios with renal parameters.</p><h3>Discussion</h3><p>and Conclusions.</p><p>Among the explored metals, exposure to Cu and iodine impairs renal function. In contrast, Se may manifest as a beneficial metal. Interactions of Mo-Se and Mo-Iodine seem to alter the expression of NGAL; Mo-Cu for CLU; Mo-Cu, Mo-Se, and Mo-iodine for Cys-C and a-1MG; and Mo-Cu and Mo-iodine for KIM-1; were noticed. Our study could suggest that trace element interactions were associated with early kidney damage biomarkers.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 3","pages":"721 - 737"},"PeriodicalIF":4.1,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信