BiometalsPub Date : 2024-09-05DOI: 10.1007/s10534-024-00610-4
K. E. Hana Mol, Tancia Rosalin, K. K. Elyas
{"title":"Iron oxide nanoparticles derived from Polyalthia korintii (Dunal) Benth. & Hook. F leaves extract exhibits biological and dye degradation potentials","authors":"K. E. Hana Mol, Tancia Rosalin, K. K. Elyas","doi":"10.1007/s10534-024-00610-4","DOIUrl":"10.1007/s10534-024-00610-4","url":null,"abstract":"<div><p>Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing <i>Polyalthia korintii</i> aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV–Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40–60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against <i>Enterococcus faecalis</i> and <i>Klebsiella pneumoniae</i>. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of <i>Culex quinquefasciatus</i> was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 5","pages":"1289 - 1303"},"PeriodicalIF":4.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adjuvant therapy with zinc supplementation; anti-inflammatory and anti-oxidative role in multiple myeloma patients receiving autologous hematopoietic stem cell transplantation: a randomized controlled clinical trial","authors":"Kasra Jahankhani, Niloofar Taghipour, Maryam Nikoonezhad, Hossein Behboudi, Mahshid Mehdizadeh, Dariush Kadkhoda, Abbas Hajifathali, Nariman Mosaffa","doi":"10.1007/s10534-024-00630-0","DOIUrl":"10.1007/s10534-024-00630-0","url":null,"abstract":"<div><p>Multiple myeloma (MM) patients are often accompanied by heightened levels of oxidative stress, even following bone marrow transplantation. Trace mineral supplements have been found to regulate and inhibit the activity of oxidative radicals and inflammatory factors, which are involved in the pathogenesis of MM. The study sought to evaluate the effectiveness of the supplementation by analyzing changes in oxidative, anti-oxidative, and inflammation markers. Patients were randomly assigned to a zinc or placebo group, with the former receiving 30 mg of zinc or placebo tablets daily for 1 month. Blood samples were collected from the patients on the day of transplantation, 15 days, and 30 days post-transplantation. Real-time PCR was employed to measure the expression of oxidative/antioxidative genes. Furthermore, the protein level of oxidative markers in serum samples was assessed. Finally, serum TNF-α concentrations were measured using the ELISA technique. The expression levels of SOD1, SOD2, and NRF2 genes were significantly higher on days 15 and 30 compared to the control group (P < 0.05), with a greater increase on day 30 (P < 0.05). Conversely, the expression levels of Keap1 and NOX2 genes were lower on day 30 than those of the control group (P < 0.05), with a further decrease from day 15 to day 30 (P < 0.05). The experimental group exhibited a notable reduction in TNF-α cytokine levels on day 30 compared to the control and placebo groups (P < 0.05). All findings were coordinated according to the nutritional questionnaire. Our findings suggest a potential benefit of zinc supplementation in managing the adverse effects of chemotherapy in MM patients, warranting further investigation.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1609 - 1627"},"PeriodicalIF":4.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-30DOI: 10.1007/s10534-024-00628-8
Fanshi Zhang, Zhuofan Ye, Yuanyang Xie, Mei Liu, Li Zhang, Jun Zhang, Zucai Xu
{"title":"Levodopa-induced dyskinesia: brain iron deposition as a new hypothesis","authors":"Fanshi Zhang, Zhuofan Ye, Yuanyang Xie, Mei Liu, Li Zhang, Jun Zhang, Zucai Xu","doi":"10.1007/s10534-024-00628-8","DOIUrl":"10.1007/s10534-024-00628-8","url":null,"abstract":"<div><p>Parkinson’s disease (PD) is a common neurodegenerative disease in the older adults. The main pathological change in PD is the degenerative death of dopamine (DA) neurons in the midbrain substantia nigra, which causes a significant decrease in the DA content of the striatum. However, the exact etiology of this pathological change remains unclear. Genetic factors, environmental factors, aging, and oxidative stress may be involved in the degenerative death of dopaminergic neurons in PD. Pharmacological treatment using levodopa (<span>l</span>-DOPA) remains the main treatment for PD. Most patients with PD consuming <span>l</span>-DOPA for a long time usually develop levodopa-induced dyskinesia (LID) after 6.5 years of use, and LID seriously affects the quality of life and increases the risk of disability. Recently, studies have revealed that cerebral iron deposition may be involved in LID development and that iron deposition has neurotoxic effects and accelerates disease onset. However, the relationship between cerebral iron deposition and LID remains unclear. Herein, we reviewed the mechanisms by which iron deposition may be associated with LID development, which are mainly related to oxidative stress, neuroinflammation, and mitochondrial and lysosomal dysfunction. Using iron as an important target, the search and development of safe and effective brain iron scavengers, and thus the alleviation and treatment of LID, has a very important scientific and clinical value, as well as a good application prospect.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1307 - 1323"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-28DOI: 10.1007/s10534-024-00629-7
Anna Evers, Jackson Kohn, Oliver Baars, James M. Harrington, Kosuke Namba, Owen W. Duckworth
{"title":"Stability of metal ion complexes with the synthetic phytosiderophore proline-2′-deoxymugineic acid","authors":"Anna Evers, Jackson Kohn, Oliver Baars, James M. Harrington, Kosuke Namba, Owen W. Duckworth","doi":"10.1007/s10534-024-00629-7","DOIUrl":"10.1007/s10534-024-00629-7","url":null,"abstract":"<div><p>Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2′-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logK<sub>OH</sub>) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1599 - 1607"},"PeriodicalIF":4.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of serum lead, copper, iron, and zinc and hematological parameters in battery smelting workers: assessing lead toxicity","authors":"Maleeha Sikandar Memon, Ikram Udiin Ujjan, Marvi Shaikh, Sadia Qamar Arain, Arshi Naz, Huma Abbasi","doi":"10.1007/s10534-024-00623-z","DOIUrl":"10.1007/s10534-024-00623-z","url":null,"abstract":"<div><p>The present study is conducted to know the serum lead, copper, iron, and zinc levels, in parallel to hematological parameters, in battery smelting workers to assess lead toxicity. Battery smelting is known to expose workers to high levels of lead, which can have significant negative health effects. Blood samples from 150 participants, including 75 battery smelting workers and 75 controls, were analyzed for metal concentrations and hematological indices. The results revealed significantly elevated levels of lead in the serum of battery smelting workers as compared to control group. Elevated lead levels were also correlated with significantly decreased hemoglobin levels and hematocrit values, manifesting potential anemia in these workers. In addition, disarrangements in serum copper, iron, and zinc levels were also observed, proposing a possible interaction between lead exposure and the metabolism of these essential metals. These findings highlight the need for regular monitoring of battery smelting facilities and environment and to take improved protective measures to prevent lead toxicity and its associated hematological disturbances. This study aims to analyze the effect of occupational lead exposure on blood levels of lead, zinc, iron, and copper in battery workers compared to normal subjects and evaluate their blood counts.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1529 - 1535"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-23DOI: 10.1007/s10534-024-00626-w
Mohammed H. Zaid, Falah S. Al-Fartusie, Yaghub Pazhang, Safaa Kader
{"title":"Evaluation of lipid profile, liver function enzymes, and trace elements in Iraqi diabetic nephropathy patients","authors":"Mohammed H. Zaid, Falah S. Al-Fartusie, Yaghub Pazhang, Safaa Kader","doi":"10.1007/s10534-024-00626-w","DOIUrl":"10.1007/s10534-024-00626-w","url":null,"abstract":"<div><p>Diabetic nephropathy, a common complication of type 2 diabetes (T2DM), is associated with abnormal lipid profiles, liver dysfunction, and kidney impairment. However, research on its association with trace elements in Iraqi patients is limited. The objective of the present study is to evaluate the association between lipid profile, liver function, and trace elements in diabetic nephropathy (DN) patients. In this study, 120 individuals were selected. Sixty of these individuals were labeled as the DN patient group, and 60 individuals were labeled as the healthy control group. A flame atomic absorption spectrophotometer (FAAS) was utilized to assess the levels of zinc (Zn), copper (Cu), and magnesium (Mg), whereas a flameless atomic absorption (FAA) was used to assess manganese (Mn). A colorimetric method was used based on the protocols included in the leaflets by Spinreact kits to determine the levels of lipid profiles and liver function enzymes in the serum. The mean value of high-density lipoprotein (HDL) decreased significantly in the DN patient group compared to the control group (<i>p</i> < 0.001) while cholesterol and low-density lipoprotein (LDL) decreased insignificantly. Conversely, the mean value of triglycerides (TGs) increased significantly in patient group ((<i>p</i> < 0.001) while very low-density lipoprotein (VLDL) increased insignificantly. On the other hand, the mean values of aspartate aminotransferase (AST), alanine transferase (ALT), alkaline phosphatase (ALP), and γ- glutamyl transferase (GGT) were significantly greater in DN patients compared to the healthy controls. Conversely, the mean values of total protein (TP) and albumin (Alb) were significantly lower in the DN patient group. In terms of trace elements, the mean values of Zn, Mg, and Mn were significantly lower in each of the patient groups compared to the healthy group. Conversely, a significant elevation in the means of Cu and Fe was observed in patients compared to the healthy group. Additionally, the findings revealed no association between BMI and lipid profile, liver enzymes, or trace elements. However, an association with age was limited to TGs, ALP, and GGT. The study’s results show that the DN patients have abnormalities in their serum trace element levels. This means that these elements could be valuable indicators for monitoring and assessing the progression of DN. Understanding the correlation between lipid profile, liver function, and trace elements could offer valuable insights for managing and preventing diabetic nephropathy. More extensive studies, including an additional group of DM patients without nephropathy complications, are required, and could be used in practice due to the progression of the disease.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1565 - 1574"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-19DOI: 10.1007/s10534-024-00625-x
Ana Raquel Soares de Oliveira, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Loanne Rocha dos Santos, Stéfany Rodrigues de Sousa Melo, Larissa Cristina Fontenelle, Juliana Soares Severo, Jéssica Batista Beserra, Thayanne Gabryelle Visgueira de Sousa, Suelem Torres de Freitas, Emyle Horrana Serafim de Oliveira, Carla Soraya Costa Maia, Emídio Marques de Matos Neto, Francisco Erasmo de Oliveira, Gilberto Simeone Henriques, Dilina do Nascimento Marreiro
{"title":"Magnesium, selenium and zinc deficiency compromises antioxidant defense in women with obesity","authors":"Ana Raquel Soares de Oliveira, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Loanne Rocha dos Santos, Stéfany Rodrigues de Sousa Melo, Larissa Cristina Fontenelle, Juliana Soares Severo, Jéssica Batista Beserra, Thayanne Gabryelle Visgueira de Sousa, Suelem Torres de Freitas, Emyle Horrana Serafim de Oliveira, Carla Soraya Costa Maia, Emídio Marques de Matos Neto, Francisco Erasmo de Oliveira, Gilberto Simeone Henriques, Dilina do Nascimento Marreiro","doi":"10.1007/s10534-024-00625-x","DOIUrl":"10.1007/s10534-024-00625-x","url":null,"abstract":"<div><p>Studies have shown that deficiencies in magnesium, selenium, and zinc in individuals with obesity compromise the endogenous antioxidant defense system. This study aimed to evaluate the impact of mineral deficiency on enzymatic antioxidant defense in women with obesity. The study involved 63 women with obesity (BMI ≥ 35 kg/m<sup>2</sup>) and 77 eutrophic women (BMI between 18.5 and 24.9 kg/m<sup>2</sup>). Variables such as fasting glucose, glycated hemoglobin, fasting insulin, and serum lipids were analyzed. Insulin resistance was measured using the homeostasis assessment model (HOMA-IR) and beta cell function using the homeostasis assessment model (HOMA-β). Dietary intake of energy, macronutrients (including magnesium, zinc, and selenium), and plasma, erythrocyte, and urinary concentrations of these minerals were measured and analyzed. Serum cortisol, plasma leptin, plasma thiobarbituric acid reactive substances, and the activity of erythrocyte superoxide dismutase (SOD), erythrocyte glutathione peroxidase (GPX), and erythrocyte catalase were also analyzed. Women with obesity had reduced plasma and erythrocyte concentrations and greater urinary excretion of all minerals compared to normal weight women (p < 0.05). There was a positive association between erythrocyte concentrations of zinc and selenium and the activity of the GPX and SOD enzymes in erythrocytes in women with obesity (p < 0.05), in addition to a positive association between serum insulin and the enzyme GPX, which is dependent on dietary selenium (p < 0.05). Individuals with obesity are deficient in magnesium, selenium, and zinc, which appears to impair the antioxidant defense system and contribute to important metabolic disorders such as oxidative stress in these patients.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1551 - 1563"},"PeriodicalIF":4.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-18DOI: 10.1007/s10534-024-00627-9
Bandashisha Kharpan, Jagritima Chetia, Hunshisha Pyngrope, Rajat Nandi, Amit Kumar Pradhan, Pradip C. Paul, Diwakar Kumar
{"title":"Investigation of antileishmanial, antioxidant activities, CT-DNA interaction and DFT study of novel cobalt(II) complexes derived from mesogenic aromatic amino acids based Schiff base ligands","authors":"Bandashisha Kharpan, Jagritima Chetia, Hunshisha Pyngrope, Rajat Nandi, Amit Kumar Pradhan, Pradip C. Paul, Diwakar Kumar","doi":"10.1007/s10534-024-00627-9","DOIUrl":"10.1007/s10534-024-00627-9","url":null,"abstract":"<div><p>In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL<sup>1</sup> [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL<sup>2</sup> [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against <i>Leishmania donovani</i> was evaluated by MTT assay and the antioxidant activity was performed by Mensor’s method. The cell viability percentage and IC<sub>50</sub> values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV–Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL<sup>1</sup> and HL<sup>2</sup> along with their corresponding Co(II) complexes, Co(L<sup>1</sup>)<sub>2</sub> and Co(L<sup>2</sup>)<sub>2</sub>. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L<sup>1</sup>)<sub>2</sub> is the most stable and Co(L<sup>2</sup>)<sub>2</sub> is the most electrophilic.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1575 - 1597"},"PeriodicalIF":4.1,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-17DOI: 10.1007/s10534-024-00624-y
Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo
{"title":"Abnormal erythrocyte-related parameters in children with Pb, Cr, Cu and Zn exposure","authors":"Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo","doi":"10.1007/s10534-024-00624-y","DOIUrl":"10.1007/s10534-024-00624-y","url":null,"abstract":"<div><p>The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = −2.74, (95% Cl: −4.49, −0.995)], MCH [β = −0.505, (95% Cl: −0.785, −0.226)], MCV [β = −1.024, (95% Cl: −1.767, −0.281)], and MCHC [β = −2.137, (95% Cl: −3.54, −0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1537 - 1549"},"PeriodicalIF":4.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiometalsPub Date : 2024-08-10DOI: 10.1007/s10534-024-00622-0
Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari
{"title":"Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties","authors":"Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari","doi":"10.1007/s10534-024-00622-0","DOIUrl":"10.1007/s10534-024-00622-0","url":null,"abstract":"<div><p>Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of <i>Polygonum bistorta Linn.</i> for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of <i>P. bistorta Linn</i>. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that <i>Polygonum bistorta Linn.</i> synthesized SeNPs exhibit significant antibacterial and antifungal activities with <i>Staphylococcus aureus</i> and <i>Fusarium oxysporum</i> inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of <i>Leishmania tropica</i>. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, <i>Polygonum bistorta Linn</i>. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important <i>Polygonum bistorta Linn</i>. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":"37 6","pages":"1511 - 1527"},"PeriodicalIF":4.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}