Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo
{"title":"接触铅、铬、铜和锌的儿童红细胞相关参数异常。","authors":"Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo","doi":"10.1007/s10534-024-00624-y","DOIUrl":null,"url":null,"abstract":"<p><p>The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal erythrocyte-related parameters in children with Pb, Cr, Cu and Zn exposure.\",\"authors\":\"Zhuxia Zhang, Bo Xie, Qi Zhong, Chenxu Dai, Xijin Xu, Xia Huo\",\"doi\":\"10.1007/s10534-024-00624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-024-00624-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00624-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Abnormal erythrocyte-related parameters in children with Pb, Cr, Cu and Zn exposure.
The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.