Anna Evers, Jackson Kohn, Oliver Baars, James M Harrington, Kosuke Namba, Owen W Duckworth
{"title":"Stability of metal ion complexes with the synthetic phytosiderophore proline-2'-deoxymugineic acid.","authors":"Anna Evers, Jackson Kohn, Oliver Baars, James M Harrington, Kosuke Namba, Owen W Duckworth","doi":"10.1007/s10534-024-00629-7","DOIUrl":null,"url":null,"abstract":"<p><p>Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2'-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logK<sub>OH</sub>) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00629-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adequate micronutrient concentrations in crops are essential for human health and agricultural productivity. However, 30% of plants growing on cultivated soils worldwide are deficient in iron (Fe). Because of low micronutrient bioavailability, graminaceous plants have evolved to exude small molecules, called phytosiderophores, into the soil environment, which strongly complex and promote uptake of trace elements. The development of a synthetic phytosiderophore, proline-2'-deoxymugeneic acid (PDMA), has been shown to promote Fe uptake in rice plants; however, its binding capabilities with other metals, which may impact the ability to promote the uptake of Fe and other trace nutrient metals commonly found in soils, remain unknown. We conducted spectrophotometric titrations to determine the stability constants (logK) of PDMA complexes with Mn(II), Co(II), Cu(II), Ni(II), and Zn(II). We determined that PDMA complex stability constants correlated with: (1) the hydrolysis constants of metal ions (logKOH) in complexes; (2) the ionic potential of complexed metals; and (3) the corresponding complex stability constants of other mugineic acid type phytosiderophores, as well as the trishydroxamate microbial siderophore DFOB. These correlations demonstrate the potential, and limitations, on our ability to predict the stability of phytosiderophore complexes with metal ions with different physicochemical properties and with potentially different coordination structures.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.