Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari
{"title":"Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties.","authors":"Hafiz Abdul Haseeb, Muhammad Aslam Khan, Hassam Rasheed, Muhammad Usman Zahid, Thu Dung Doan, Muhammad Aamir Ramzan Siddique, Uzair Ahmad, Syed Ali Imran Bokhari","doi":"10.1007/s10534-024-00622-0","DOIUrl":null,"url":null,"abstract":"<p><p>Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00622-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.