Air Quality Atmosphere and Health最新文献

筛选
英文 中文
Comparing machine learning and inverse modeling approaches for the source term estimation 比较源项估算的机器学习和逆向建模方法
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-24 DOI: 10.1007/s11869-024-01570-x
Stefano Alessandrini, Scott Meech, Will Cheng, Christopher Rozoff, Rajesh Kumar
{"title":"Comparing machine learning and inverse modeling approaches for the source term estimation","authors":"Stefano Alessandrini,&nbsp;Scott Meech,&nbsp;Will Cheng,&nbsp;Christopher Rozoff,&nbsp;Rajesh Kumar","doi":"10.1007/s11869-024-01570-x","DOIUrl":"10.1007/s11869-024-01570-x","url":null,"abstract":"<div><p>Mathematical models serve as crucial tools for quantitatively assessing the environmental and population impact resulting from the release of hazardous substances. Often, precise source parameters remain elusive, leading to a reliance on rudimentary assumptions. This challenge is particularly pronounced in scenarios involving releases that are accidental or deliberate acts of terrorism. A conventional method for estimating the source term involves the construction of backward plumes originating from various sensors measuring tracer concentrations. The area displaying the highest overlap of these backward plumes typically offers an initial approximation for the most probable release location. The backward plume (BP) method has been compared with a machine learning based method. Both methods use data from a field campaign and from a synthetic dataset built from a simple setup featuring receptors arranged linearly downwind from the release point. A substantial number (~ 1500) of forward plume simulations are conducted, each initiated from random locations and under varying meteorological conditions. This extensive dataset encompasses critical meteorological variables and concentration measurements recorded by idealized receptors. Subsequently, the dataset has been partitioned into training and testing subsets. A feed-forward neural network (NN) has been employed. This NN is trained using the concentration data from the receptors and the associated meteorological variables as input, with the source location coordinates serving as the output. Subsequent verification is carried out using the testing dataset, facilitating a comparison between the NN's and BP’s predictions and the actual source locations. One of the key advantages of the NN-based approach is its ability to rapidly estimate the source term, typically within a fraction of a second on a standard laptop. This speed is of paramount significance in scenarios involving accidental releases, where swift response is essential. Notably, the computationally intensive tasks of dataset construction and NN training can be conducted offline, providing preparedness in areas where accidental releases may be anticipated.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2169 - 2186"},"PeriodicalIF":2.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of 2,6-dimethoxyphenol odor emitted from Ribbed Smoked Sheet by Co(II)-salen complex 用钴(II)-莎伦络合物减少罗纹烟熏板散发的 2,6-二甲氧基苯酚气味
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-23 DOI: 10.1007/s11869-024-01557-8
Hiroto Achira, Hirohiko Washiya
{"title":"Reduction of 2,6-dimethoxyphenol odor emitted from Ribbed Smoked Sheet by Co(II)-salen complex","authors":"Hiroto Achira,&nbsp;Hirohiko Washiya","doi":"10.1007/s11869-024-01557-8","DOIUrl":"10.1007/s11869-024-01557-8","url":null,"abstract":"<div><p>Gas chromatography–mass spectroscopy (GC–MS) was used to characterize ribbed smoked sheet No. 3 (RSS 3) and latex to confirm the presence of 2,6-dimethoxyphenol odor. The selected ion monitoring (SIM) chromatogram of RSS 3 exhibited a 2,6-dimethoxyphenol peak at <i>m/z</i> 154, while the latex chromatogram did not show any peak. Using a synthetic <i>cis</i>-1,4-polyisoprene rubber and 2,6-dimethoxyphenol mixture as reference, the GC–MS analysis indicated that RSS 3 emits 4.0 mg/kg of 2,6-dimethoxyphenol. When added to the SIM chromatogram, the cobalt (II)-complex of salicylaldehyde ethylenediamine Schiff base ligand (Co(II)-salen) reduced the quantity of 2,6-dimethoxyphenol. This indicates that the odor was oxidized during physical mixing, implying that it was dissolved in the solution. Furthermore, the solubility of 2,6-dimethoxyphenol in various solvents was determined using the Hansen solubility parameters to identify the optimal solvents for the oxidation of the odor by the Co(II)-salen complex. Thermal analysis and theoretical study also indicate the generation of phenoxy radical by Co(II)-salen complex.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 9","pages":"1997 - 2004"},"PeriodicalIF":2.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140667505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The association between short-term ozone exposure and fasting blood glucose levels in non-diabetic adults was more obvious in rural residents: the evidence from a typical “urban–rural dual structure” province in southwestern China 短期臭氧暴露与非糖尿病成人空腹血糖水平的关系在农村居民中更为明显--来自中国西南典型 "城乡二元结构 "省份的证据
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-23 DOI: 10.1007/s11869-024-01575-6
Xue-Jiao Li, Ling Li, Li Zhao, Ding-Yan Hu, Na-Na Ma, Hua Xiao, Da-Wei Li, Jie Zhou, Yi-Ying Wang, Ji Zhang, Tao Liu, Yue-Xu Jiang, Tong-Jian Cai
{"title":"The association between short-term ozone exposure and fasting blood glucose levels in non-diabetic adults was more obvious in rural residents: the evidence from a typical “urban–rural dual structure” province in southwestern China","authors":"Xue-Jiao Li,&nbsp;Ling Li,&nbsp;Li Zhao,&nbsp;Ding-Yan Hu,&nbsp;Na-Na Ma,&nbsp;Hua Xiao,&nbsp;Da-Wei Li,&nbsp;Jie Zhou,&nbsp;Yi-Ying Wang,&nbsp;Ji Zhang,&nbsp;Tao Liu,&nbsp;Yue-Xu Jiang,&nbsp;Tong-Jian Cai","doi":"10.1007/s11869-024-01575-6","DOIUrl":"10.1007/s11869-024-01575-6","url":null,"abstract":"<div><p>Ambient ozone (O<sub>3</sub>) is associated with diabetes (DM), but the data on the association between O<sub>3</sub> and fasting blood glucose (FBG) in non-diabetic adults is relatively rare, especially the evidence of urban–rural difference in such association is still lacking. Our research aimed to investigate the potential effects of short-term O<sub>3</sub> exposure on FBG levels. We carried out a cross-sectional analysis of a representative sample of 5329 adults from the Guizhou Population Health Cohort Study and the association between O<sub>3</sub> and FBG levels was determined. In rural populations, subgroup analyses were performed by gender, age, nationality, and so on. We observed that short-term exposure to ambient O<sub>3</sub> was positively associated with FBG levels. The strongest association was observed at lag 015 days, with per 10 μg/m<sup>3</sup> increase of O<sub>3</sub> concentration leading to a significant increase of 0.050 mmol/L (95%CIs: 0.037, 0.063) in FBG. More importantly, the association between O<sub>3</sub> and FBG levels was stronger in rural populations with lower income levels. Further stratified analyses showed that participants who were older than 60 years, males, smokers, Han, non-drinkers, warm season, dietary score ≥ 3, exercise time &lt; 150 min/week, sleep duration &lt; 7 h/day, and BMI &lt; 18.5 kg/m<sup>2</sup> were potentially more susceptible to the effects of O<sub>3</sub> in rural populations. In general, our study not only provided the evidence that O<sub>3</sub> exposure can be associated with increased FBG levels, but also shed new light on the further understanding of the adverse effects of O<sub>3</sub> on DM. Furthermore, rural populations may be more vulnerable to the effects of O<sub>3</sub>. Our findings indicate that the issue of air pollution in rural areas is equally noteworthy.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2321 - 2336"},"PeriodicalIF":2.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact assessment of IMO’s sulfur content limits: a case study at latin America’s largest grain port 国际海事组织硫含量限制的影响评估:拉丁美洲最大谷物港口的案例研究
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-22 DOI: 10.1007/s11869-024-01576-5
Camila Arielle Bufato Moreira, Gabriela Polezer, Jéssica Caroline dos Santos Silva, Priscila Caroline de Souza Zorzenão, Ana Flavia Locateli Godoi, Luciano Fernandes Huergo, Carlos Itsuo Yamamoto, Yara de Souza Tadano, Sanja Potgieter-Vermaak, Rodrigo Arantes Reis, Andrea Oliveira, Ricardo Henrique Moreton Godoi
{"title":"Impact assessment of IMO’s sulfur content limits: a case study at latin America’s largest grain port","authors":"Camila Arielle Bufato Moreira,&nbsp;Gabriela Polezer,&nbsp;Jéssica Caroline dos Santos Silva,&nbsp;Priscila Caroline de Souza Zorzenão,&nbsp;Ana Flavia Locateli Godoi,&nbsp;Luciano Fernandes Huergo,&nbsp;Carlos Itsuo Yamamoto,&nbsp;Yara de Souza Tadano,&nbsp;Sanja Potgieter-Vermaak,&nbsp;Rodrigo Arantes Reis,&nbsp;Andrea Oliveira,&nbsp;Ricardo Henrique Moreton Godoi","doi":"10.1007/s11869-024-01576-5","DOIUrl":"10.1007/s11869-024-01576-5","url":null,"abstract":"<div><p>The world ocean fleet consumes around 4.3 million barrels of heavy fuel oil (HFO) daily, releasing large amounts of sulfur-enriched gaseous and particulate pollutants into the atmosphere. The International Maritime Organization (IMO) has set new sulfur content limit values for HFO under the Global Sulfur Cap 2020 (GSC-2020) program to reduce its environmental and public health impact. This study assesses the environmental benefits of the sulfur content limit values for heavy fuel oil set by the IMO on sulfur emissions, trace element concentrations, and ship related PM<sub>2.5</sub> pollution at Paranaguá, the largest grain port in Latin America. X-ray Fluorescence analysis revealed that the concentrations of vanadium (V) and nickel (Ni) in PM<sub>2.5</sub> (i.e., finer particulate matter), which are prevalent trace elements in ship exhaust emissions, decreased significantly from 25.4 ng m<sup>− 3</sup> and 5.8 ng m<sup>− 3</sup> in 2019 to 3.5 ng m<sup>− 3</sup> and 2.2 ng m<sup>− 3</sup> in 2020, respectively. The V/Ni ratio also changed from 4.3 in 2019 to 1.8 in 2020, suggesting significant changes in the signature of marine vessel emission. Sulfur emissions also decreased, with average concentrations of 2.0 µg m<sup>− 3</sup> in 2019 and 1.2 µg m<sup>− 3</sup> in 2020. The primary PM<sub>2.5</sub> concentration, attributed to ship emissions using V as a tracer, was reduced from ~ 80% in 2019 (mean = 35.8%) to less than 5% (mean = 4.9%) in 2020. Inhalation exposure to V and Ni in PM<sub>2.5</sub> showed a decrease in the hazard quotient (HQ) and hazard index (HI) in 2020 compared to 2019, indicating potential health benefits. Our findings underscore the need for more robust international shipping policies prioritizing health objectives and reducing greenhouse gas emissions concurrently. Despite the significant health benefits associated with the implementation of low-sulfur fuels in global shipping, there remains a need for further investigation into the long-term effects of these fuels on air quality and human health.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2337 - 2351"},"PeriodicalIF":2.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting up a CFD model to evaluate the impact of green infrastructures on local air quality 建立 CFD 模型,评估绿色基础设施对当地空气质量的影响
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-20 DOI: 10.1007/s11869-024-01567-6
V. Rodrigues, B. Augusto, K. Oliveira, A. Ascenso, S. Rafael, D. Nascimento, A. I. Miranda
{"title":"Setting up a CFD model to evaluate the impact of green infrastructures on local air quality","authors":"V. Rodrigues,&nbsp;B. Augusto,&nbsp;K. Oliveira,&nbsp;A. Ascenso,&nbsp;S. Rafael,&nbsp;D. Nascimento,&nbsp;A. I. Miranda","doi":"10.1007/s11869-024-01567-6","DOIUrl":"10.1007/s11869-024-01567-6","url":null,"abstract":"<div><p>Green infrastructures have been pointed out as innovative solutions to deal with current and future challenges related to air pollution and climate change. Although the potential of green infrastructures, such as green walls and green roofs, to mitigate air pollution has been documented, evidence at a local scale is still limited. This work aims to increase knowledge about the potentialities of green infrastructures in improving local air quality, focusing on particulate matter, nitrogen dioxide and ozone pollutants, and by using a local-scale computational fluid dynamics model. The ENVI-met model was applied to a particular hour of a summer day over a built-up environment centred on a main avenue in the city of Lisbon (Portugal). The dimensions of the computational domain are 618 m × 594 m × 143 m, and it contains 184 buildings, with the tallest building being 56 m. In addition to the baseline simulation, modelling was also done considering the application of green walls and green roofs to specific buildings located near the main avenue, together with a green corridor. The overall results show no disturbances exerted by green walls on the turbulent flow dynamics and on the air quality levels when compared to the baseline scenario (without green walls). The integrated scenario, which includes green walls, green roofs and a green corridor, will lead to potential local benefits of green infrastructures on O<sub>3</sub> concentrations, followed by variable impacts on NO<sub>2</sub> and particulate matter concentrations.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2151 - 2167"},"PeriodicalIF":2.9,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01567-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial model for daily air quality high resolution estimation 每日空气质量高分辨率估算空间模型
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-18 DOI: 10.1007/s11869-024-01566-7
Morgan Jacquinot, Romain Derain, Alexandre Armengaud, Sonia Oppo
{"title":"Spatial model for daily air quality high resolution estimation","authors":"Morgan Jacquinot,&nbsp;Romain Derain,&nbsp;Alexandre Armengaud,&nbsp;Sonia Oppo","doi":"10.1007/s11869-024-01566-7","DOIUrl":"10.1007/s11869-024-01566-7","url":null,"abstract":"<div><p>In air quality modeling, fine-scale daily mapping is generally calculated from dispersion models involving multiple parameters linked in particular to emissions, which require regular updating and a long computation time. The aim of this work is to provide a simpler model, easily adaptable to other regions and capable of estimating nitrogen dioxide concentrations to a good approximation. To this end, we examine the relationship between daily and annual nitrogen dioxide values. We find that this relationship depends on the range of daily values. Then we provide a statistical model capable of estimating daily concentrations over large areas on a fine spatial scale. The model’s performance is compared with standard geostatistical method such as external drift kriging with cross-validation over one year. The reduced computation time means that daily maps can be produced for use by French air quality observatories.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2141 - 2150"},"PeriodicalIF":2.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01566-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does urban particulate matter hinder COVID-19 transmission rate? 城市颗粒物是否会阻碍 COVID-19 的传播速度?
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-18 DOI: 10.1007/s11869-024-01574-7
Josep Penuelas, Marcos Fernández-Martínez, Sandra Cobo, Llorenç Badiella, Jordi Sardans
{"title":"Does urban particulate matter hinder COVID-19 transmission rate?","authors":"Josep Penuelas,&nbsp;Marcos Fernández-Martínez,&nbsp;Sandra Cobo,&nbsp;Llorenç Badiella,&nbsp;Jordi Sardans","doi":"10.1007/s11869-024-01574-7","DOIUrl":"10.1007/s11869-024-01574-7","url":null,"abstract":"<div><p>The COVID-19 pandemic has had a significant impact on global health, with millions of people affected by the disease. Recent studies have shown that environmental factors such as air quality, temperature, and humidity can impact the survival and transmission of the virus, leading to differences in the rate of spread and severity of the disease in different regions. In this global cross-sectional study, we analyzed the relationship between environmental factors and the transmission and survival of the virus in 167 cities distributed all over the world. We used a dataset containing daily COVID-19 data for 167 cities from 01/05/2020 to 01/01/2022, along with variables related to atmospheric and environmental conditions. We found an expected positive relationship between increases in atmospheric NO<sub>2</sub> concentration and increases in the infective rate of COVID-19. We also found an unexpected negative relationship between PM10 and COVID-19 spread, which was stronger in unpolluted cities, and indicating a likely stronger and faster deactivation of the viruses by the absorption to the larger than to the smaller particles, to PM10 more than to PM2.5. Although a complete analysis would require taking into account the restrictions in the city and the immunization status of the population, and the variance of COVID-19 spread explained by PM10 was small, only up to approx. 2%, these results contribute to a better understanding of the impact of particles on the spread of COVID-19 and other respiratory viral diseases thus informing public health policies and interventions aimed at mitigating the impact of these pandemics.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2307 - 2319"},"PeriodicalIF":2.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-024-01574-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ozone variability, its formation potential and crops losses in the himalayan foothills 喜马拉雅山脚的臭氧变异性、其形成潜力和农作物损失
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-16 DOI: 10.1007/s11869-024-01572-9
Mahendar Chand Rajwar, Manish Naja, Yogesh Kant, Prajjwal Rawat, Vikrant Tomar, RK Tiwari, Shyam Lal
{"title":"Ozone variability, its formation potential and crops losses in the himalayan foothills","authors":"Mahendar Chand Rajwar,&nbsp;Manish Naja,&nbsp;Yogesh Kant,&nbsp;Prajjwal Rawat,&nbsp;Vikrant Tomar,&nbsp;RK Tiwari,&nbsp;Shyam Lal","doi":"10.1007/s11869-024-01572-9","DOIUrl":"10.1007/s11869-024-01572-9","url":null,"abstract":"<div><p>Surface ozone observations in Doon Valley (Dehradun: 30.3<sup>o</sup>N, 78.0<sup>o</sup>E, 700 m), which acts as a bridge between the Himalayas and the Indo-Gangetic Plain, showed daytime higher values, suggesting a typical urban behaviour in proximity of the Himalayas. Ozone exhibited a maximum in spring (49.2 ± 24.8 ppbv in May) with an hourly average of more than 110 ppbv, followed by a secondary maximum in autumn and the lowest level occurring in the summer-monsoon (~ 13 ppbv in July-August). Ozone levels exceeded the 8-hour National Air Quality Standard limit (50 ppbv) throughout the year, except in July-September. The observed spring maximum was found to be triggered by biomass burning, leading to 9–50% enhancement in ozone during the high-fire activity period (April-May). Using a box model, in-situ photochemical ozone production and loss were estimated at ~ 41 ppbv and ~ 8 ppbv, respectively. The model highlighted the dominant role of the HO<sub>2</sub> + NO reaction (85.6%) in ozone production and the O<sub>3</sub> + HO<sub>2</sub> reaction (56.2%) in ozone loss. Exposure metrics analysis (M7 and AOT40) estimated an annual loss of 27–37 kilotons of wheat and 14–32 kilotons of rice production due to elevated ozone levels. Furthermore, hazard ratios for non-methane hydrocarbons and lifetime cancer risk values for benzene and ethylbenzene exceeded the standard limits (USEPA and WHO), indicating significant health risks to the population. Model and satellite-based studies demonstrated the NO<sub>x</sub>-sensitive behaviour of ozone production in this Himalayan region, where aromatics exhibited the maximum ozone formation potential among different NMHCs.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2263 - 2276"},"PeriodicalIF":2.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140610337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The regulation effect of urban green space on air particulate matter concentration under different matrices in Xi'an city 西安市不同基质下城市绿地对空气颗粒物浓度的调节作用
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-15 DOI: 10.1007/s11869-024-01555-w
Bo Jiang, Shiyu Fan, Chang Sun, Sen Mu, Tian Gao, Ling Qiu
{"title":"The regulation effect of urban green space on air particulate matter concentration under different matrices in Xi'an city","authors":"Bo Jiang,&nbsp;Shiyu Fan,&nbsp;Chang Sun,&nbsp;Sen Mu,&nbsp;Tian Gao,&nbsp;Ling Qiu","doi":"10.1007/s11869-024-01555-w","DOIUrl":"10.1007/s11869-024-01555-w","url":null,"abstract":"<div><p>Urban green space can effectively alleviate air pollution, in which vegetation structure plays an important role. However, these green spaces with varying vegetation structures exist in different environmental backgrounds of the city. By analyzing the influence of the different environmental backgrounds on the dust retention effect of green spaces with varying vegetation structures, green spaces can be truly utilized as a solution in alleviating air pollution. Therefore, according to the typical characteristics of landscape patterns and different coverage ratios of green areas in Xi’an city, China, the matrices of urban landscape were divided into three types, which include \"green space\", \"grey-green mixed space\" and \"gray space.\" In each environmental background, urban green space was divided into three levels: horizontal structure, species composition and vertical structure. Subsequently, 13 types of green spaces with different vegetation structures and three hard (no vegetation present) squares as control groups were selected. A one-year on-site monitoring was conducted on urban green spaces and concentrations of TSP, PM<sub>10</sub>, PM<sub>2.5</sub> and PM<sub>1</sub>. The results showed that: (1) In the green space, the concentrations of PM<sub>1</sub> and PM<sub>2.5</sub> were relatively higher. In the grey-green mixed space, the average concentration of air particle of all four particle sizes was the lowest. In the gray space, the concentrations of PM<sub>10</sub> and TSP were more concentrated. (2) Under the same matrices, due to the different locations of the plots, the concentration of air particles of different sizes was significantly different. Under the different urban environmental backgrounds, temperature, relative humidity, wind speed and air pressure all showed the same trend in the change of air particle concentration. (3) The one-layer green space structure was most suitable for planting. Considering the green space, the coniferous one-layered green space (CO) structure was recommended. The partly-closed broad-leaved one-layered green space (P-CBO) was found to be more suitable for the grey-green mixed space. Considering the gray space in the city center, it was suggested to plant the closed mixed coniferous and broad-leaved one-layered green space (CMO) structure. The findings provide empirical support for the future collocation of urban green vegetation structure and the improvement of urban air quality.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 9","pages":"1951 - 1968"},"PeriodicalIF":2.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140601415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characteristics and ozone formation potentials of volatile organic compounds in a heavy industrial urban agglomeration of Northeast China 中国东北重工业城市群挥发性有机化合物的特征和臭氧形成潜力
IF 2.9 4区 环境科学与生态学
Air Quality Atmosphere and Health Pub Date : 2024-04-15 DOI: 10.1007/s11869-024-01569-4
Yue Zhang, Bo You, Yijing Shang, Qiuyang Bao, Yanli Zhang, Xiaobing Pang, Li Guo, Jing Fu, Weiwei Chen
{"title":"Characteristics and ozone formation potentials of volatile organic compounds in a heavy industrial urban agglomeration of Northeast China","authors":"Yue Zhang,&nbsp;Bo You,&nbsp;Yijing Shang,&nbsp;Qiuyang Bao,&nbsp;Yanli Zhang,&nbsp;Xiaobing Pang,&nbsp;Li Guo,&nbsp;Jing Fu,&nbsp;Weiwei Chen","doi":"10.1007/s11869-024-01569-4","DOIUrl":"10.1007/s11869-024-01569-4","url":null,"abstract":"<div><p>Understanding the pollution levels, potential sources, and chemical reactivity of atmospheric volatile organic compounds (VOCs), the key precursors of ozone (O<sub>3</sub>) and fine particulate matter (PM<sub>2.5</sub>), is important for emission control and air pollution abatement. This study presents a systematic VOCs analysis in a less studied heavy industrial urban agglomeration located in Northeast China. Using a cruising platform, we conducted real-time monitoring of VOC concentrations and components at Changchun (CC), Jilin (JL), Siping (SP), and Liaoyuan (LY) in Jilin Province. During the observation period, the average VOC concentrations at CC, JL, SP, and LY were 63.38 ± 127.03, 260.39 ± 855.76, 18.06 ± 17.17, and 10.12 ± 17.48 µg/m<sup>3</sup>, respectively. Halocarbons were predominant with a high percentage of contribution (22.4–31.1%) to the total observed VOCs for all cities. Combined with 2020-based anthropogenic VOCs emission inventory of Jilin Province, we concluded that industrial processes had the largest contribution to VOCs concentration in CC, whereas petrochemical emission was the major source of VOCs in JL. The assessment of atmospheric photochemical reactivity indicates the dominant role of aromatics and alkenes in O<sub>3</sub> formation potential (OFP). As the second-most abundant species in CC and JL, aromatics contributed over 50% of the OFPs. Alkenes played a dominant role in O<sub>3</sub> formation in SP and LY, accounting for nearly half of the total OFPs. Considering the VOC emission characteristics and OFP results, we suggest that reducing aromatics emissions, particularly benzene, toluene, ethylbenzene, and xylene, should be given higher priority to mitigate O<sub>3</sub> pollution and prevent health risks. Moreover, industrial-related, and petrochemical sources are crucial in the evolution of O<sub>3</sub> pollution, which should be incorporated into heavy industrial urban air quality management and targeted control of O<sub>3</sub> pollution in Northeast China.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 10","pages":"2235 - 2246"},"PeriodicalIF":2.9,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140600961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信