{"title":"Thermal analysis of a reflection mirror by fluid and solid heat transfer method.","authors":"Zhen Wang, Fang Liu, Chaofan Xue","doi":"10.1107/S1600577524008749","DOIUrl":"10.1107/S1600577524008749","url":null,"abstract":"<p><p>High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1576-1581"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Celebrating JSR's 30th anniversary: reminiscences of a Main Editor.","authors":"John R Helliwell","doi":"10.1107/S1600577524009482","DOIUrl":"10.1107/S1600577524009482","url":null,"abstract":"<p><p>Reminiscences of one of the founding Main Editors of JSR on its 30th anniversary.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1414"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stewart Midgley, Nanette Schleich, Andrew Stevenson, Alex Merchant
{"title":"Synchrotron CT dosimetry for wiggler operation at reduced magnetic field and spatial modulation with bow tie filters.","authors":"Stewart Midgley, Nanette Schleich, Andrew Stevenson, Alex Merchant","doi":"10.1107/S1600577524008531","DOIUrl":"10.1107/S1600577524008531","url":null,"abstract":"<p><p>The Australian Synchrotron Imaging and Medical Beamline (IMBL) uses a superconducting multipole wiggler (SCMPW) source, dual crystal Laue monochromator and 135 m propagation distance to enable imaging and computed tomography (CT) studies of large samples with mono-energetic radiation. This study aimed to quantify two methods for CT dose reduction: wiggler source operation at reduced magnetic field strength, and beam modulation with spatial filters placed upstream from the sample. Transmission measurements with copper were used to indirectly quantify the influence of third harmonic radiation. Operation at lower wiggler magnetic field strength reduces dose rates by an order of magnitude, and suppresses the influence of harmonic radiation, which is of significance near 30 keV. Beam shaping filters modulate the incident beam profile for near constant transmitted signal, and offer protection to radio-sensitive surface organs: the eye lens, thyroid and female breast. Their effect is to reduce the peripheral dose and the dose to the scanned volume by about 10% for biological samples of 35-50 mm diameter and by 20-30% for samples of up to 160 mm diameter. CT dosimetry results are presented as in-air measurements that are specific to the IMBL, and as ratios to in-air measurements that may be applied to other beamlines. As CT dose calculators for small animals are yet to be developed, results presented here and in a previous study may be used to estimate absorbed dose to organs near the surface and the isocentre.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1438-1445"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study of structural effects on the focusing and imaging performance of hard X-rays with 20-30 nm zone plates.","authors":"Xujie Tong, Vishal Dhamgaye, Qiucheng Chen, Qingxin Wu, Biao Deng, Ling Zhang, Oliver Fox, Hongchang Wang, Jun Zhao, Yifang Chen, Zijian Xu, Peng Li, Kawal Sawhney","doi":"10.1107/S1600577524009615","DOIUrl":"10.1107/S1600577524009615","url":null,"abstract":"<p><p>Hard X-ray microscopes with 20-30 nm spatial resolution ranges are an advanced tool for the inspection of materials at the nanoscale. However, the limited efficiency of the focusing optics, for example, a Fresnel zone plate (ZP) lens, can significantly reduce the power of a nanoprobe. Despite several reports on ZP lenses that focus hard X-rays with 20 nm resolution - mainly constructed by zone-doubling techniques - a systematic investigation into the limiting factors has not been reported. We report the structural effects on the focusing and imaging efficiency of 20-30 nm-resolution ZPs, employing a modified beam-propagation method. The zone width and the duty cycle (zone width/ring pitch) were optimized to achieve maximum efficiency, and a comparative analysis of the zone materials was conducted. The optimized zone structures were used in the fabrication of Pt-hydrogen silsesquioxane (HSQ) ZPs. The highest focusing efficiency of the Pt-HSQ-ZP with a resolution of 30 nm was 10% at 7 keV and >5% in the range 6-10 keV, whereas the highest efficiency of the Pt-HSQ-ZP with a resolution of 20 nm was realized at 7 keV with an efficiency of 7.6%. Optical characterization conducted at X-ray beamlines demonstrated significant enhancement of the focusing and imaging efficiency in a broader range of hard X-rays from 5 keV to 10 keV, demonstrating the potential application in hard X-ray focusing and imaging.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1457-1463"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formulation of perfect-crystal diffraction from Takagi-Taupin equations: numerical implementation in the crystalpy library.","authors":"Jean Pierre Guigay, Manuel Sanchez Del Rio","doi":"10.1107/S160057752400924X","DOIUrl":"10.1107/S160057752400924X","url":null,"abstract":"<p><p>The Takagi-Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1469-1480"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mirror-centered representation of a focusing hyperbolic mirror for X-ray beamlines.","authors":"Jean Pierre Torras","doi":"10.1107/S1600577524009603","DOIUrl":"10.1107/S1600577524009603","url":null,"abstract":"<p><p>Conic sections are commonly used in reflective X-ray optics. Hyperbolic mirrors can focus a converging light source and are frequently paired with elliptical or parabolic mirrors in Wolter type configurations. This paper derives the closed-form expression for a mirror-centered hyperbolic shape, with zero-slope at the origin. Combined with the slope and curvature, such an expression facilitates metrology, manufacturing and mirror-bending calculations. Previous works consider ellipses, parabolas, magnifying hyperbolas or employ lengthy approximations. Here, the exact shape function is given in terms of the mirror incidence angle and the source and image distances.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1464-1468"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valerio Bellucci, Sarlota Birnsteinova, Tokushi Sato, Romain Letrun, Jayanath C P Koliyadu, Chan Kim, Gabriele Giovanetti, Carsten Deiter, Liubov Samoylova, Ilia Petrov, Luis Lopez Morillo, Rita Graceffa, Luigi Adriano, Helge Huelsen, Heiko Kollmann, Thu Nhi Tran Calliste, Dusan Korytar, Zdenko Zaprazny, Andrea Mazzolari, Marco Romagnoni, Eleni Myrto Asimakopoulou, Zisheng Yao, Yuhe Zhang, Jozef Ulicny, Alke Meents, Henry N Chapman, Richard Bean, Adrian Mancuso, Pablo Villanueva-Perez, Patrik Vagovic
{"title":"Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources.","authors":"Valerio Bellucci, Sarlota Birnsteinova, Tokushi Sato, Romain Letrun, Jayanath C P Koliyadu, Chan Kim, Gabriele Giovanetti, Carsten Deiter, Liubov Samoylova, Ilia Petrov, Luis Lopez Morillo, Rita Graceffa, Luigi Adriano, Helge Huelsen, Heiko Kollmann, Thu Nhi Tran Calliste, Dusan Korytar, Zdenko Zaprazny, Andrea Mazzolari, Marco Romagnoni, Eleni Myrto Asimakopoulou, Zisheng Yao, Yuhe Zhang, Jozef Ulicny, Alke Meents, Henry N Chapman, Richard Bean, Adrian Mancuso, Pablo Villanueva-Perez, Patrik Vagovic","doi":"10.1107/S1600577524008488","DOIUrl":"10.1107/S1600577524008488","url":null,"abstract":"<p><p>X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1534-1550"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green upgrading of SPring-8 to produce stable, ultrabrilliant hard X-ray beams.","authors":"Hitoshi Tanaka, Takahiro Watanabe, Toshinori Abe, Noriyoshi Azumi, Tsuyoshi Aoki, Hideki Dewa, Takahiro Fujita, Kenji Fukami, Toru Fukui, Toru Hara, Toshihiko Hiraiwa, Kei Imamura, Takahiro Inagaki, Eito Iwai, Akihiro Kagamihata, Morihiro Kawase, Yuichiro Kida, Chikara Kondo, Hirokazu Maesaka, Tamotsu Magome, Mitsuhiro Masaki, Takemasa Masuda, Shinichi Matsubara, Sakuo Matsui, Takashi Ohshima, Masaya Oishi, Takamitsu Seike, Masazumi Shoji, Kouichi Soutome, Takashi Sugimoto, Shinji Suzuki, Minori Tajima, Shiro Takano, Kazuhiro Tamura, Takashi Tanaka, Tsutomu Taniuchi, Yukiko Taniuchi, Kazuaki Togawa, Takato Tomai, Yosuke Ueda, Hiroshi Yamaguchi, Makina Yabashi, Tetsuya Ishikawa","doi":"10.1107/S1600577524008348","DOIUrl":"10.1107/S1600577524008348","url":null,"abstract":"<p><p>SPring-8-II is a major upgrade project of SPring-8 that was inaugurated in October 1997 as a third-generation synchrotron radiation light source. This upgrade project aims to achieve three goals simultaneously: achievement of excellent light source performance, refurbishment of aged systems, and significant reduction in power consumption for the entire facility. A small emittance of 50 pm rad will be achieved by (1) replacing the existing double-bend lattice structure with a five-bend achromat one, (2) lowering the stored beam energy from 8 to 6 GeV, (3) increasing the horizontal damping partition number from 1 to 1.3, and (4) enhancing horizontal radiation damping by installing damping wigglers in long straight sections. The use of short-period in-vacuum undulators allows ultrabrilliant X-rays to be provided while keeping a high-energy spectral range even at the reduced electron-beam energy of 6 GeV. To reduce power consumption, the dedicated, aged injector system has been shut down and the high-performance linear accelerator of SACLA, a compact X-ray free-electron laser (XFEL) facility, is used as the injector of the ring in a time-shared manner. This allows the simultaneous operation of XFEL experiments at SACLA and full/top-up injection of the electron beam into the ring. This paper overviews the concept of the SPring-8-II project, the system design of the light source and the details of the accelerator component design.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1420-1437"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142511019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lothar Weinhardt, Constantin Wansorra, Ralph Steininger, Thomas Spangenberg, Dirk Hauschild, Clemens Heske
{"title":"High-transmission spectrometer for rapid resonant inelastic soft X-ray scattering (rRIXS) maps.","authors":"Lothar Weinhardt, Constantin Wansorra, Ralph Steininger, Thomas Spangenberg, Dirk Hauschild, Clemens Heske","doi":"10.1107/S160057752400804X","DOIUrl":"10.1107/S160057752400804X","url":null,"abstract":"<p><p>The design and first results of a high-transmission soft X-ray spectrometer operated at the X-SPEC double-undulator beamline of the KIT Light Source are presented. As a unique feature, particular emphasis was placed on optimizing the spectrometer transmission by maximizing the solid angle and the efficiencies of spectrometer gratings and detector. A CMOS detector, optimized for soft X-rays, allows for quantum efficiencies of 90% or above over the full energy range of the spectrometer, while simultaneously offering short readout times. Combining an optimized control system at the X-SPEC beamline with continuous energy scans (as opposed to step scans), the high transmission of the spectrometer, and the fast readout of the CMOS camera, enable the collection of entire rapid resonant inelastic soft X-ray scattering maps in less than 1 min. Series of spectra at a fixed energy can be taken with a frequency of up to 5 Hz. Furthermore, the use of higher-order reflections allows a very wide energy range (45 to 2000 eV) to be covered with only two blazed gratings, while keeping the efficiency high and the resolving power E/ΔE above 1500 and 3000 with low- and high-energy gratings, respectively.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1481-1488"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elke Plönjes, Jan Grünert, Pavle Juranić, Kai Tiedtke, Marco Zangrando
{"title":"Foreword to the special virtual issue dedicated to the proceedings of the PhotonMEADOW2023 Joint Workshop.","authors":"Elke Plönjes, Jan Grünert, Pavle Juranić, Kai Tiedtke, Marco Zangrando","doi":"10.1107/S1600577524008816","DOIUrl":"10.1107/S1600577524008816","url":null,"abstract":"<p><p>Foreword to the virtual issue papers from the PhotonMEADOW2023 workshop.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1415-1416"},"PeriodicalIF":2.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}