Tilman Donath, Sofia Trampari, Lucas Wagner, Mads R V Jørgensen, Frederik H Gjørup, Stefano Checchia, Marco Di Michiel, Emmanuel Papillon, Gavin Vaughan
{"title":"Enhancing high-energy powder X-ray diffraction applications using a PILATUS4 CdTe detector.","authors":"Tilman Donath, Sofia Trampari, Lucas Wagner, Mads R V Jørgensen, Frederik H Gjørup, Stefano Checchia, Marco Di Michiel, Emmanuel Papillon, Gavin Vaughan","doi":"10.1107/S1600577525000566","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid photon counting detectors have significantly advanced synchrotron research. In particular, the introduction of large cadmium telluride-based detectors in 2015 enabled a whole new range of high-energy X-ray measurements. This article describes the specifications of the new PILATUS4 cadmium telluride detector and presents results from prototype testing for high-energy powder X-ray diffraction studies conducted at two synchrotrons. The experiments concern time-resolved in situ solid-state reactions at MAX IV (Sweden) and fast-scanning X-ray diffraction computed tomography of a battery cell at the ESRF (France). The detector's high quantum efficiency up to 100 keV, combined with a maximum frame rate of 4000 Hz, enables fast data collection. This study demonstrates how these capabilities contribute to improved time and spatial resolution in high-energy powder X-ray diffraction studies, facilitating advancements in materials, chemical and energy research.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"378-384"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525000566","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid photon counting detectors have significantly advanced synchrotron research. In particular, the introduction of large cadmium telluride-based detectors in 2015 enabled a whole new range of high-energy X-ray measurements. This article describes the specifications of the new PILATUS4 cadmium telluride detector and presents results from prototype testing for high-energy powder X-ray diffraction studies conducted at two synchrotrons. The experiments concern time-resolved in situ solid-state reactions at MAX IV (Sweden) and fast-scanning X-ray diffraction computed tomography of a battery cell at the ESRF (France). The detector's high quantum efficiency up to 100 keV, combined with a maximum frame rate of 4000 Hz, enables fast data collection. This study demonstrates how these capabilities contribute to improved time and spatial resolution in high-energy powder X-ray diffraction studies, facilitating advancements in materials, chemical and energy research.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.