Tadashi Togashi, Shigeki Owada, Toshinori Yabuuchi, Makina Yabashi
{"title":"SACLA泵-探针实验的长期定时稳定。","authors":"Tadashi Togashi, Shigeki Owada, Toshinori Yabuuchi, Makina Yabashi","doi":"10.1107/S1600577524011974","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a timing control system to stabilize the long-term timing drift between X-ray free-electron laser (XFEL) and optical laser pulses using an out-of-loop balanced optical-microwave phase detector and an arrival-timing monitor for pump-probe experiments at the SPring-8 Ångstrom Compact free-electron LAser (SACLA). The timing jitter and drift between the XFEL and the optical laser pulses have been reduced to less than 50 fs (RMS) over ∼49 h. The performance of the timing stabilization system was investigated by measuring the correlation of the long-term simultaneous timing monitoring on two branches of BL3 over 8 h. A linear correlation was observed with an RMS error of 8.6 fs.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"269-274"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892902/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-term timing stabilization for pump-probe experiments at SACLA.\",\"authors\":\"Tadashi Togashi, Shigeki Owada, Toshinori Yabuuchi, Makina Yabashi\",\"doi\":\"10.1107/S1600577524011974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have developed a timing control system to stabilize the long-term timing drift between X-ray free-electron laser (XFEL) and optical laser pulses using an out-of-loop balanced optical-microwave phase detector and an arrival-timing monitor for pump-probe experiments at the SPring-8 Ångstrom Compact free-electron LAser (SACLA). The timing jitter and drift between the XFEL and the optical laser pulses have been reduced to less than 50 fs (RMS) over ∼49 h. The performance of the timing stabilization system was investigated by measuring the correlation of the long-term simultaneous timing monitoring on two branches of BL3 over 8 h. A linear correlation was observed with an RMS error of 8.6 fs.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"269-274\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892902/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524011974\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524011974","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Long-term timing stabilization for pump-probe experiments at SACLA.
We have developed a timing control system to stabilize the long-term timing drift between X-ray free-electron laser (XFEL) and optical laser pulses using an out-of-loop balanced optical-microwave phase detector and an arrival-timing monitor for pump-probe experiments at the SPring-8 Ångstrom Compact free-electron LAser (SACLA). The timing jitter and drift between the XFEL and the optical laser pulses have been reduced to less than 50 fs (RMS) over ∼49 h. The performance of the timing stabilization system was investigated by measuring the correlation of the long-term simultaneous timing monitoring on two branches of BL3 over 8 h. A linear correlation was observed with an RMS error of 8.6 fs.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.