Bin Zhou , Qiang Zou , Hu Jiang , Tao Yang , Wen-Tao Zhou , Si-Yu Chen , Hong-Kun Yao
{"title":"Process-driven susceptibility assessment of glacial lake outburst debris flow in the Himalayas under climate change","authors":"Bin Zhou , Qiang Zou , Hu Jiang , Tao Yang , Wen-Tao Zhou , Si-Yu Chen , Hong-Kun Yao","doi":"10.1016/j.accre.2023.11.002","DOIUrl":"10.1016/j.accre.2023.11.002","url":null,"abstract":"<div><p>Global warming is causing glaciers to retreat and glacial lakes to expand in the Himalayas, which amplifies the risk of glacial lake outburst debris flows (GLODFs) and poses a significant threat to downstream lives and infrastructures. However, the complex interplay between GLODF occurrences and associated indicators, coupled with the lack of a comprehensive susceptibility indicator system that considers the entire GLODF process, presents a substantial challenge in assessing GLODF susceptibility in the Himalayas. This study proposes a process-driven GLODF susceptibility assessment indicator system responding to climate change that considers the complete process of GLODF formation, incorporating relevant parameters about upstream, themselves, and downstream of glacial lakes. Furthermore, to mitigate subjective factors associated with traditional evaluation methods, we developed three novel hybrid machine-learning models by integrating classic machine-learning algorithms with the whale optimization algorithm (WOA) to delineate the distribution of GLODF susceptibility in the Himalayas. All the hybrid models effectively predicted the GLODFs occurrence, with the WOA-SVC model demonstrating the highest prediction accuracy. Approximately 34% of the catchments exhibit high and very high susceptibility levels, primarily concentrated along the north and south sides of the Himalayan ridge, particularly in the eastern and central Himalayas. Indicators capturing the physical formation process of hazards, such as topographic potential (highest relative importance value of 40%), can precisely identify GLODF. A total of 128 catchments pose potential transboundary threats, with 24 classified as having a very high susceptibility level and 25 as having a high susceptibility level. Notably, the border region between China and Nepal is a prominent hotspot for transboundary threats of GLODF. These findings can provide valuable clues for disaster prevention, mitigation, and cross-border coordination in the Himalayas.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 500-514"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927823001399/pdfft?md5=0c9befa74a9fd346b30083e1e304fa13&pid=1-s2.0-S1674927823001399-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139299562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gang-Feng Zhang , Cesar Azorin-Molina , Deliang Chen , Tim R. McVicar , Jose A. Guijarro , Kai-Qiang Deng , Lorenzo Minola , Jaeyeon Lee , Seok-Woo Son , Heng Ma , Pei-Jun Shi
{"title":"Variability and trends of near-surface wind speed over the Tibetan Plateau: The role played by the westerly and Asian monsoon","authors":"Gang-Feng Zhang , Cesar Azorin-Molina , Deliang Chen , Tim R. McVicar , Jose A. Guijarro , Kai-Qiang Deng , Lorenzo Minola , Jaeyeon Lee , Seok-Woo Son , Heng Ma , Pei-Jun Shi","doi":"10.1016/j.accre.2024.04.007","DOIUrl":"10.1016/j.accre.2024.04.007","url":null,"abstract":"<div><p>Near-surface wind speed exerts profound impacts on many environmental issues, while the long-term (≥60 years) trend and multidecadal variability in the wind speed and its underlying causes in global high-elevation and mountainous areas (<em>e.g</em>., Tibetan Plateau) remain largely unknown. Here, by examining homogenized wind speed data from 104 meteorological stations over the Tibetan Plateau for 1961–2020 and ERA5 reanalysis datasets, we investigated the variability and long-term trend in the near-surface wind speed and revealed the role played by the westerly and Asian monsoon. The results show that the homogenized annual wind speed displays a decreasing trend (−0.091 m s<sup>−1</sup> per decade, <em>p</em> < 0.05), with the strongest in spring (−0.131 m s<sup>−1</sup> per decade, <em>p</em> < 0.05), and the weakest in autumn (−0.071 m s<sup>−1</sup> per decade, <em>p</em> < 0.05). There is a distinct multidecadal variability of wind speed, which manifested in an prominent increase in 1961–1970, a sustained decrease in 1970–2002, and a consistent increase in 2002–2020. The observed decadal variations are likely linked to large-scale atmospheric circulation, and the correlation analysis unveiled a more important role of westerly and East Asian winter monsoon in modulating near-surface wind changes over the Tibetan Plateau. The potential physical processes associated with westerly and Asian monsoon changes are in concordance with wind speed change, in terms of overall weakened horizontal air flow (<em>i.e</em>., geostrophic wind speed), declined vertical thermal and dynamic momentum transfer (<em>i.e</em>., atmospheric stratification thermal instability and vertical wind shear), and varied Tibetan Plateau vortices. This indicates that to varying degrees these processes may have contributed to the changes in near-surface wind speed over the Tibetan Plateau. This study has implications for wind power production and soil wind erosion prevention in the Tibetan Plateau.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 525-536"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000571/pdfft?md5=809a50df76ddd7e5ecf12968e955c477&pid=1-s2.0-S1674927824000571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140789094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Zhang , Yun-Fei Yao , Xiang-Yan Qian , Yu-Fei Zhang , Qiao-Mei Liang , Yi-Ming Wei
{"title":"Could the EU carbon border adjustment mechanism promote climate mitigation? An economy-wide analysis","authors":"Kun Zhang , Yun-Fei Yao , Xiang-Yan Qian , Yu-Fei Zhang , Qiao-Mei Liang , Yi-Ming Wei","doi":"10.1016/j.accre.2024.05.002","DOIUrl":"10.1016/j.accre.2024.05.002","url":null,"abstract":"<div><p>Due to concerns about carbon leakage and sectoral competitiveness, the European Union (EU) proposed implementing the carbon border adjustment mechanism (CBAM). The effectiveness and potential negative consequences of CBAM have aroused extensive discussion. From the perspective of the economy-wide analysis, this study uses a global computable general equilibrium model to explore the rationality of CBAM from the aspects of socioeconomic impact and the effects of promoting climate mitigation. Furthermore, the potential alternative mechanism of CBAM is proposed. The results show that CBAM can reduce the EU's gross domestic product (GDP) loss; however, the GDP loss in all other regions increases. Moreover, CBAM raises household welfare losses in most regions, including the EU. Second, although CBAM can reduce the marginal abatement cost in eight regions, it comes at the cost of greater economic losses. Furthermore, the economic and household welfare cost of raising emissions reduction targets in regions like the USA and Japan is substantially higher than the impact of passively accepting the CBAM; therefore, CBAM's ability to drive ambitious emission reduction initiatives may be limited. Finally, for the potential alternative mechanism, from the perspective of reducing economic cost and household welfare losses, the EU could implement domestic tax cuts in the short-term and promote global unified carbon pricing in the long-term.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 557-571"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167492782400073X/pdfft?md5=7290cc434b5c80fb9380257bc46f23d4&pid=1-s2.0-S167492782400073X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin Fu , Bo Zhang , Qiao Liu , Guo-Xiang Liu , Rui Zhang
{"title":"Dynamics of the spatiotemporal velocity of glaciers on the eastern slope of Mount Gongga, China, under climate change","authors":"Yin Fu , Bo Zhang , Qiao Liu , Guo-Xiang Liu , Rui Zhang","doi":"10.1016/j.accre.2024.04.004","DOIUrl":"10.1016/j.accre.2024.04.004","url":null,"abstract":"<div><p>The quantitative assessment of glacier flow velocity dynamics plays a pivotal role in understanding its response mechanisms concerning climate warming. This work provides a systematic quantitative assessment of the deceleration status of glaciers in this region by investigating the motion evolution of typical glaciers in Mount Gongga in recent years, thereby revealing the seasonal dynamics and inter-annual evolution over an extensive time span. We used the optical flow-small baseline subset (OF-SBAS) method to compute the time-series velocities of the Hailuogou Glacier and the Mozigou Glacier using 178 archived Sentinel-1 satellite synthetic aperture radar (SAR) images from 2014 to 2021. The findings revealed a prominent seasonal pattern in glacier motion, characterised by cyclic variations in velocity from cold to warm seasons. Moreover, we identified variations in velocities across distinct regions of the glacier surface, underscored by the lag in the peak time node of glacier flow with increasing elevation. This pattern may have been determined by a combination of internal and external factors, including mass accumulation and ablation-driven subglacial drainage, as well as the glacier geomorphological setting. Furthermore, during 2015–2021, the glaciers on the eastern slope of Mount Gongga exhibited an overarching trend of deceleration. Notably, the ablation area of the Hailuogou Glacier recorded the most substantial deceleration, exceeding 8% per year. This study underscores the efficacy of the OF-SBAS method in extracting long-term glacier velocities. This work also establishes a robust foundation for the analysis of spatiotemporal fluctuations in glacier movement within the context of climate warming.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 490-499"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000546/pdfft?md5=a6c04fee08530f5ba66c57e883ea42f0&pid=1-s2.0-S1674927824000546-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wang , Bin-Bin Wang , Peng Cui , Yao-Ming Ma , Yan Wang , Jian-Sheng Hao , Yu Wang , Ya-Mei Li , Li-Jun Sun , Jiao Wang , Guo-Tao Zhang , Wei-Mo Li , Yu Lei , Wen-Qing Zhao , Jin-Bo Tang , Chao-Yue Li
{"title":"Disaster effects of climate change in High Mountain Asia: State of art and scientific challenges","authors":"Hao Wang , Bin-Bin Wang , Peng Cui , Yao-Ming Ma , Yan Wang , Jian-Sheng Hao , Yu Wang , Ya-Mei Li , Li-Jun Sun , Jiao Wang , Guo-Tao Zhang , Wei-Mo Li , Yu Lei , Wen-Qing Zhao , Jin-Bo Tang , Chao-Yue Li","doi":"10.1016/j.accre.2024.06.003","DOIUrl":"10.1016/j.accre.2024.06.003","url":null,"abstract":"<div><p>High Mountain Asia (HMA) shows a remarkable warming tendency and divergent trend of regional precipitation with enhanced meteorological extremes. The rapid thawing of the HMA cryosphere may alter the magnitude and frequency of nature hazards. We reviewed the influence of climate change on various types of nature hazards in HMA region, including their phenomena, mechanisms and impacts. It reveals that: 1) the occurrences of extreme rainfall, heavy snowfall, and drifting snow hazards are escalating; accelerated ice and snow melting have advanced the onset and increased the magnitude of snowmelt floods; 2) due to elevating trigger factors, such as glacier debuttressing and the rapid shift of thermal and hydrological regime of bedrock/snow/ice interface or subsurface, the mass flow hazards including bedrock landslide, snow avalanche, ice-rock avalanches or glacier detachment, and debris flow will become more severe; 3) increased active-layer detachment and retrogressive thaw slumps slope failures, thaw settlement and thermokarst lake will damage many important engineering structures and infrastructure in permafrost region; 4) multi-hazards cascading hazard in HMA, such as the glacial lake outburst flood (GLOF) and avalanche-induced mass flow may greatly enlarge the destructive power of the primary hazard by amplifying its volume, mobility, and impact force; and 5) enhanced slope instability and sediment supply in the highland areas could impose remote catastrophic impacts upon lowland regions, and threat hydropower security and future water shortage. In future, ongoing thawing of HMA will profoundly weaken the multiple-phase material of bedrock, ice, water, and soil, and enhance activities of nature hazards. Compounding and cascading hazards of high magnitude will prevail in HMA. As the glacier runoff overpasses the peak water, low flow or droughts in lowland areas downstream of glacierized mountain regions will became more frequent and severe. Addressing escalating hazards in the HMA region requires tackling scientific challenges, including understanding multiscale evolution and formation mechanism of HMA hazard-prone systems, coupling thermo‒hydro‒mechanical processes in multi-phase flows, predicting catastrophes arising from extreme weather and climate events, and comprehending how highland hazards propagate to lowlands due to climate change.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 367-389"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000790/pdfft?md5=665de4b2127a430683820f41507f326f&pid=1-s2.0-S1674927824000790-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disastrous effects of climate change on High Mountain Asia","authors":"Peng Cui, Yao-Ming Ma, Yan Wang, Bin-Bin Wang","doi":"10.1016/j.accre.2024.06.004","DOIUrl":"10.1016/j.accre.2024.06.004","url":null,"abstract":"","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 365-366"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000807/pdfft?md5=c2bfade87e3284ce618465a5bf2c2f1e&pid=1-s2.0-S1674927824000807-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141390777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variations and future projections of glacial discharge of Urumqi River Headwaters, eastern Tien Shan (1980s–2017)","authors":"Hui Zhang , Fei-Teng Wang , Ping Zhou , Yi-Da Xie","doi":"10.1016/j.accre.2024.05.001","DOIUrl":"10.1016/j.accre.2024.05.001","url":null,"abstract":"<div><p>To address data scarcity on long-term glacial discharge and inadequacies in simulating and predicting hydrological processes in the Tien Shan, this study analysed the observed discharge at multiple timescales over 1980s–2017 and projected changes within a representative glacierized high-mountain region: eastern Tien Shan, Central Asia. Hydrological processes were simulated to predict changes under four future scenarios (SSP1, SSP2, SSP3, and SSP5) using a classical hydrological model coupled with a glacier dynamics module. Discharge rates at annual, monthly (June, July, August) and daily timescales were obtained from two hydrological gauges: Urumqi Glacier No.1 hydrological station (UGH) and Zongkong station (ZK). Overall, annual and summer discharge increased significantly (<em>p</em> < 0.05) at both stations over the study period. Their intra-annual variations mainly resulted from differences in their recharge mechanisms. The simulations show that a tipping point in annual discharge at UGH may occur between 2018 and 2024 under the four SSPs scenarios. Glacial discharge is predicted to cease earlier at ZK than at UGH. This relates to glacier type and size, suggesting basins with heavily developed small glaciers will reach peak discharge sooner, resulting in an earlier freshwater supply challenge. These findings serve as a reference for research into glacial runoff in Central Asia and provide a decision-making basis for planning local water-resource projects.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 537-546"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000728/pdfft?md5=0d0d9180142111db25dff1a6e0c2989a&pid=1-s2.0-S1674927824000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141131922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting-Xing Chen , Hai-Shen Lyu , Robert Horton , Yong-Hua Zhu , Ren-Sheng Chen , Ming-Yue Sun , Ming-Wen Liu , Yu Lin
{"title":"Using Copula functions to predict climatic change impacts on floods in river source regions","authors":"Ting-Xing Chen , Hai-Shen Lyu , Robert Horton , Yong-Hua Zhu , Ren-Sheng Chen , Ming-Yue Sun , Ming-Wen Liu , Yu Lin","doi":"10.1016/j.accre.2024.04.006","DOIUrl":"10.1016/j.accre.2024.04.006","url":null,"abstract":"<div><p>Flood frequency in river source regions is significantly affected by rainfall and snowmelt as part of climatic changes. A traditional univariate flood frequency analysis cannot reflect the complexity of floods, and when used in isolation, it can only underestimate flood risk. For effective flood prevention and mitigation, it is essential to consider the combined effects of precipitation and snowmelt. Copula functions can effectively quantify the joint distribution relationship between floods and their associated variables without restrictions on their distribution characteristics. This study uses copula functions to consider a multivariate probability distribution model of flood peak flow (<em>Q</em>) with cumulative snowmelt (CSm) and cumulative precipitation (CPr) for the Hutubi River basin located in northern Xinjiang, China. The joint frequencies of rainfall and snowmelt floods are predicted using copula models based on the Coupled Model Intercomparison Project Phase 6 data. The results show that <em>Q</em> has a significant positive correlation with 24-d CSm (<em>r</em> = 0.559, <em>p</em> = 0.002) and 23-d CPr (<em>r</em> = 0.965, <em>p</em> < 0.05). Flood frequency will increase in the future, and mid- (2050–2074) and long-term (2075–2099) floods will be more severe than those in the near-term (2025–2049). The probability of flood occurrence is higher under the SSP2-4.5 and SSP1-2.6 scenarios than under SSP5-8.5. Precipitation during the historical period (1990–2014) led to extreme floods, and increasing future precipitation trends are found to be insignificant. Snowmelt increases with rising temperatures and occurs earlier than estimated, leading to an earlier flood period in the basin and more frequent snowmelt floods. The <em>Q</em> under the joint return period is larger than that during the same univariate return period. This difference indicates that neglecting the interaction between precipitation and snowmelt for floods leads to an underestimation of the flood risk (with underestimations ranging from 0.3% to 22%). The underestimations decrease with an increase in the return period. The joint risks of rainfall or snowmelt according to various flood periods should be considered for rivers with multi-source runoff recharge in flood control design. This study reveals the joint impact of precipitation and snowmelt on extreme floods under climate change in river source regions. This study also provides a scientific basis for regional flood prevention and mitigation strategies, as well as for the rational allocation of water resources.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 406-418"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S167492782400056X/pdfft?md5=a1e4d6747dfb23b2f33d054302f71cd8&pid=1-s2.0-S167492782400056X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140775864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Sun , Tan-Dong Yao , Feng-Ge Su , Tinghai Ou , Zhihua He , Guoqiang Tang , Deliang Chen
{"title":"Increased glacier melt enhances future extreme floods in the southern Tibetan Plateau","authors":"He Sun , Tan-Dong Yao , Feng-Ge Su , Tinghai Ou , Zhihua He , Guoqiang Tang , Deliang Chen","doi":"10.1016/j.accre.2024.01.003","DOIUrl":"10.1016/j.accre.2024.01.003","url":null,"abstract":"<div><p>Mountainous areas are of special hydrological concern because topography and atmospheric conditions can result in large and sudden floods, posing serious risks to water-related safety in neighbouring countries. The Yarlung Zangbo (YZ) River basin is the largest river basin on the Tibetan Plateau (TP), but how floods will discharge in this basin and how the role of glacier melt in floods will change throughout the 21st-century under shared socioeconomic pathways scenarios (SSP2-4.5 and SSP5-8.5) remain unclear. Here, we comprehensively address this scientific question based on a well-validated large-scale glacier-hydrology model. The results indicate that extreme floods was projected to increase in the YZ basin, and was mainly reflected in increased duration (4–10 d per decade) and intensity (153–985 m<sup>3</sup> s<sup>−1</sup> per decade). Glacier runoff was projected to increase (2–30 mm per decade) throughout the 21st-century, but there was also a noticeable decrease or deceleration in glacier runoff growth in the late first half of the century under the SSP2-4.5, and in the latter half of the century under the SSP5-8.5. Glacier melt was projected to enhance the duration (12%–23%) and intensity (15%–21%) of extreme floods under both SSPs, which would aggravate the impact of future floods on the socioeconomics of the YZ basin. This effect was gradually overwhelmed by precipitation-induced floods from glacier areas to YZ outlet. This study takes the YZ basin as a projection framework example to help enrich the understanding of future flood hazards in basins affected by rainfall- or meltwater across the TP, and to help policy-makers and water managers develop future plans.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 431-441"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000030/pdfft?md5=f8d7f83c1eb123b9e7a813a89ce6aa97&pid=1-s2.0-S1674927824000030-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139537826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-Shan Li , Hui Wang , Wen-Xi Xiang , Ai-Mei Wang , Wei-Qing Xu , Yu-Xi Jiang , Xin-Hui Wu , Meng-Yuan Quan
{"title":"Sea-level change in coastal areas of China: Status in 2021","authors":"Wen-Shan Li , Hui Wang , Wen-Xi Xiang , Ai-Mei Wang , Wei-Qing Xu , Yu-Xi Jiang , Xin-Hui Wu , Meng-Yuan Quan","doi":"10.1016/j.accre.2024.06.002","DOIUrl":"10.1016/j.accre.2024.06.002","url":null,"abstract":"<div><p>The sea level in coastal areas of China reached the second highest in 2021, just after that recorded in 2022. External force and dynamic analyses based on tide gauges, satellite observations, reanalysis data and regional numerical outputs were conducted to understand these abnormally high sea levels and determine their possible causes. Results show that the coastal sea level of China had increased at an annual rate of 3.4 ± 0.3 mm during 1980–2021, with an acceleration of 0.06 ± 0.02 mm per year<sup>2</sup>. The superposition of significant oscillations of quasi-2, 3–7, quasi-9, quasi-11, quasi-19 and 20–30 years contributed to the anomalously high sea levels. The negative-phased El Niño/Southern Oscillation was correlated with the anomalously high sea level and the north‒south anti-phase pattern of the coastal sea level in 2021. Meanwhile, phase lags of 1–4 months occurred with the sea-level response. On a decadal timescale, the Pacific Decadal Oscillation (PDO) was negatively correlated with the anomalous mean sea level (MSL), and the negative-phased PDO contributed to the anomalous sea-level change in 2021. Particularly, the monthly MSL peaked in April and July, and the contribution of wind stress to the anomalously high sea level was 38.5% in the south of the Taiwan Strait in April and 30% along the coast of China in July. These results were consistent with the tide gauge and satellite data. Close agreement was also observed between the coastal sea-level fingerprint and the air and sea surface temperatures.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 515-524"},"PeriodicalIF":6.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000789/pdfft?md5=387136da79dba1935a6e35c615325b69&pid=1-s2.0-S1674927824000789-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141410547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}