Xing-Feng Dong , Chao Liu , Miao Li , Xiao-Dong Wu , Zhi-Chao Zheng , Xiang-Wen Wu , Shu-Ying Zang
{"title":"Higher CH4 production in permafrost while oxidation prevails in the active layer: Insights from a forest‒wetland ecotone in Northeast China","authors":"Xing-Feng Dong , Chao Liu , Miao Li , Xiao-Dong Wu , Zhi-Chao Zheng , Xiang-Wen Wu , Shu-Ying Zang","doi":"10.1016/j.accre.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous climate warming results in a deeper active layer and elevated CH<sub>4</sub> emissions. However, our knowledge about the CH<sub>4</sub> production and oxidation potentials in active layers and permafrost remains limited. This study explored the CH<sub>4</sub> production and oxidation potentials in these layers and their responses to temperature variations across two habitats in the Da Xing'an Mountains in northeast China. The results showed that the CH<sub>4</sub> production potential was higher in permafrost than in the active layer across forest and wetland habitats (<em>p</em> < 0.05). The temperature sensitivity was greater in the active layer (1.98 ± 0.20 in forests, 3.42 ± 0.37 in wetlands) than in permafrost (1.59 ± 0.13 in forests, 2.08 ± 0.34 in wetlands). CH<sub>4</sub> oxidation potential was higher in the active layer than in permafrost (<em>p</em> < 0.05). However, its temperature sensitivity was higher in permafrost (3.65 ± 0.76 in forests, 2.62 ± 0.50 in wetlands) than in the active layer (3.46 ± 0.66 in forests, 1.90 ± 0.32 in wetlands). The key abiotic driving these processes were pH and soil water content. Amongst microbial properties, CH<sub>4</sub> production was enhanced by the abundance of <em>mcr</em>A genes and methanogenic diversity rather than by community composition. On the contrary, CH<sub>4</sub> oxidation was influenced by <em>pmo</em>A gene abundance, methanotrophic diversity and community composition. Soil parameters and microbial factors accounted for 78% of the variance in CH<sub>4</sub> production and 60% in CH<sub>4</sub> oxidation potential. Overall, this study highlights the different production and oxidation potentials of CH<sub>4</sub> in the active layer and permafrost within a forest‒wetland ecotone, as well as their controlling factors. These findings emphasise the importance of considering changes in the active layer when modelling greenhouse gas emissions from permafrost regions under a warming climate.</div></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"16 2","pages":"Pages 273-283"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927825000796","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous climate warming results in a deeper active layer and elevated CH4 emissions. However, our knowledge about the CH4 production and oxidation potentials in active layers and permafrost remains limited. This study explored the CH4 production and oxidation potentials in these layers and their responses to temperature variations across two habitats in the Da Xing'an Mountains in northeast China. The results showed that the CH4 production potential was higher in permafrost than in the active layer across forest and wetland habitats (p < 0.05). The temperature sensitivity was greater in the active layer (1.98 ± 0.20 in forests, 3.42 ± 0.37 in wetlands) than in permafrost (1.59 ± 0.13 in forests, 2.08 ± 0.34 in wetlands). CH4 oxidation potential was higher in the active layer than in permafrost (p < 0.05). However, its temperature sensitivity was higher in permafrost (3.65 ± 0.76 in forests, 2.62 ± 0.50 in wetlands) than in the active layer (3.46 ± 0.66 in forests, 1.90 ± 0.32 in wetlands). The key abiotic driving these processes were pH and soil water content. Amongst microbial properties, CH4 production was enhanced by the abundance of mcrA genes and methanogenic diversity rather than by community composition. On the contrary, CH4 oxidation was influenced by pmoA gene abundance, methanotrophic diversity and community composition. Soil parameters and microbial factors accounted for 78% of the variance in CH4 production and 60% in CH4 oxidation potential. Overall, this study highlights the different production and oxidation potentials of CH4 in the active layer and permafrost within a forest‒wetland ecotone, as well as their controlling factors. These findings emphasise the importance of considering changes in the active layer when modelling greenhouse gas emissions from permafrost regions under a warming climate.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.