Bio-Design and Manufacturing最新文献

筛选
英文 中文
Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds 锂负载电纺纳米纤维支架促进大鼠模型中损伤坐骨神经的轴突再生和功能恢复
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-27 DOI: 10.1007/s42242-024-00304-3
Banafsheh Dolatyar, Bahman Zeynali, Iman Shabani, Azita Parvaneh Tafreshi, Reza Karimi-Soflou
{"title":"Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds","authors":"Banafsheh Dolatyar, Bahman Zeynali, Iman Shabani, Azita Parvaneh Tafreshi, Reza Karimi-Soflou","doi":"10.1007/s42242-024-00304-3","DOIUrl":"https://doi.org/10.1007/s42242-024-00304-3","url":null,"abstract":"<p>Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries (PNIs). While most studies have focused only on the topographical features of the grafts, we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold. To achieve this, we fabricated an electrospun nanofibrous scaffold (ENS) containing polylactide nanofibers loaded with lithium (Li) ions, a Wnt/<i>β</i>‐catenin signaling activator. In addition, we seeded human adipose-derived mesenchymal stem cells (hADMSCs) onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced. We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model. Our results showed that Li-loaded ENSs gradually released Li within 11 d, at concentrations ranging from 0.02 to (3.64 ± 0.10) mmol/L, and upregulated the expression of Wnt/<i>β</i>-catenin target genes (<i>cyclinD1</i> and <i>c-Myc</i>) as well as those of Schwann cell markers (growth-associated protein 43 (GAP43), S100 calcium binding protein B (S100B), glial fibrillary acidic protein (GFAP), and SRY-box transcription factor 10 (SOX10)) in differentiated hADMSCs. In the PNI rat model, implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve. This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs, which showed no fibrous connective tissue but enhanced organized myelinated axons. The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinematics of mandibular advancement devices (MADs): Why do some MADs move the lower jaw backward during mouth opening? 下颌前突装置(MAD)的运动学:为什么有些下颌前突矫正器在张口时会向后移动下颌?
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-27 DOI: 10.1007/s42242-024-00288-0
Juan A. Cabrera, Alex Bataller, Sergio Postigo, Marcos García
{"title":"Kinematics of mandibular advancement devices (MADs): Why do some MADs move the lower jaw backward during mouth opening?","authors":"Juan A. Cabrera, Alex Bataller, Sergio Postigo, Marcos García","doi":"10.1007/s42242-024-00288-0","DOIUrl":"https://doi.org/10.1007/s42242-024-00288-0","url":null,"abstract":"<p>Mandibular advancement devices (MADs) are widely used treatments for obstructive sleep apnea. MADs function by advancing the lower jaw to open the upper airway. To increase patient comfort, most patients allow the mouth to be opened. However, not all systems maintain the lower jaw in a forward position during mouth opening, which results in the production of a retrusion that favors the collapse of the upper airway. Furthermore, the kinematic behavior of the mechanism formed by the mandible-device assembly depends on jaw morphology. This means that, during mouth opening, some devices cause lower jaw protrusion in some patients, but cause its retraction in others. In this study, we report the behavior of well-known devices currently on the market. To do so, we developed a kinematic model of the lower jaw device assembly. This model was validated for all devices analyzed using a high-resolution camera system. Our results show that some of the devices analyzed here did not produce the correct behavior during patient mouth opening.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced strategies for 3D-printed neural scaffolds: materials, structure, and nerve remodeling 三维打印神经支架的先进策略:材料、结构和神经重塑
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-23 DOI: 10.1007/s42242-024-00291-5
Jian He, Liang Qiao, Jiuhong Li, Junlin Lu, Zhouping Fu, Jiafang Chen, Xiangchun Zhang, Xulin Hu
{"title":"Advanced strategies for 3D-printed neural scaffolds: materials, structure, and nerve remodeling","authors":"Jian He, Liang Qiao, Jiuhong Li, Junlin Lu, Zhouping Fu, Jiafang Chen, Xiangchun Zhang, Xulin Hu","doi":"10.1007/s42242-024-00291-5","DOIUrl":"https://doi.org/10.1007/s42242-024-00291-5","url":null,"abstract":"<p>Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions. The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health. Three-dimensional (3D) printing offers versatility and precision in the fabrication of neural scaffolds. Complex neural structures such as neural tubes and scaffolds can be fabricated via 3D printing. This review comprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design. It highlights therapeutic strategies and structural design involving neural materials and stem cells. First, nerve regeneration materials and their fabrication techniques are outlined. The applications of conductive materials in neural scaffolds are reviewed, and their potential to facilitate neural signal transmission and regeneration is highlighted. Second, the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated, and their potential to restore neural function and promote the recovery of different nervous systems is emphasized. In addition, various applications of 3D-printed neural scaffolds in peripheral and neurological diseases, as well as the design strategies of multifunctional biomimetic scaffolds, are discussed.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment 用于全动态时域心肌细胞膜再愈合评估的集成纳米多孔电穿孔和传感电极阵列
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-20 DOI: 10.1007/s42242-024-00308-z
Weiqin Sheng, Ying Li, Chunlian Qin, Zhonghai Zhang, Yuxiang Pan, Zhicheng Tong, Chong Teng, Xinwei Wei
{"title":"Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment","authors":"Weiqin Sheng, Ying Li, Chunlian Qin, Zhonghai Zhang, Yuxiang Pan, Zhicheng Tong, Chong Teng, Xinwei Wei","doi":"10.1007/s42242-024-00308-z","DOIUrl":"https://doi.org/10.1007/s42242-024-00308-z","url":null,"abstract":"<p>Intracellular electrophysiological research is vital for biological and medical research. Traditional planar microelectrode arrays (MEAs) have disadvantages in recording intracellular action potentials due to the loose cell–electrode interface. To investigate intracellular electrophysiological signals with high sensitivity, electroporation was used to obtain intracellular recordings. In this study, a biosensing system based on a nanoporous electrode array (NPEA) integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time. Moreover, nanoporous electrodes can induce the protrusion of cell membranes and enhance cell–electrode interfacial coupling, thereby facilitating effective electroporation. Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes, which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane. We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential, evaluate cardiomyocyte electroporation, and provide a new strategy for investigating cardiology pharmacological science.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing 利用基于投影的三维打印技术快速制造模块化三维纸基微流体芯片
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-17 DOI: 10.1007/s42242-024-00298-y
Mingjun Xie, Zexin Fu, Chunfei Lu, Sufan Wu, Lei Pan, Yong He, Yi Sun, Ji Wang
{"title":"Rapid fabrication of modular 3D paper-based microfluidic chips using projection-based 3D printing","authors":"Mingjun Xie, Zexin Fu, Chunfei Lu, Sufan Wu, Lei Pan, Yong He, Yi Sun, Ji Wang","doi":"10.1007/s42242-024-00298-y","DOIUrl":"https://doi.org/10.1007/s42242-024-00298-y","url":null,"abstract":"<p>Paper-based microchips have different advantages, such as better biocompatibility, simple production, and easy handling, making them promising candidates for clinical diagnosis and other fields. This study describes a method developed to fabricate modular three-dimensional (3D) paper-based microfluidic chips based on projection-based 3D printing (PBP) technology. A series of two-dimensional (2D) paper-based microfluidic modules was designed and fabricated. After evaluating the effect of exposure time on the accuracy of the flow channel, the resolution of this channel was experimentally analyzed. Furthermore, several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods, with good channel connectivity. Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible. Furthermore, by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips, multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paper-based microfluidic chips, confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable and untethered soft robots created using printable and recyclable ferromagnetic fibers 利用可打印、可回收的铁磁纤维制造可持续、无系链软体机器人
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-16 DOI: 10.1007/s42242-024-00303-4
Wei Tang, Yidan Gao, Zeyu Dong, Dong Han, Vadim V. Gorodov, Elena Y. Kramarenko, Jun Zou
{"title":"Sustainable and untethered soft robots created using printable and recyclable ferromagnetic fibers","authors":"Wei Tang, Yidan Gao, Zeyu Dong, Dong Han, Vadim V. Gorodov, Elena Y. Kramarenko, Jun Zou","doi":"10.1007/s42242-024-00303-4","DOIUrl":"https://doi.org/10.1007/s42242-024-00303-4","url":null,"abstract":"<p>Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge. Here, we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures. These ferromagnetic fibers are recyclable and can make soft robots sustainable. The ferromagnetic fibers based on thermoplastic polyurethane (TPU)/NdFeB hybrid particles are extruded by an extruder. We use a desktop three-dimensional (3D) printer to demonstrate the feasibility of printing two-dimensional (2D) and complex 3D soft robots. These printed soft robots can be recycled and reprinted into new robots once their tasks are completed. Moreover, these robots show almost no difference in actuation capability compared to prior versions and have new functions. Successful applications include lifting, grasping, and moving objects, and these functions can be operated untethered wirelessly. In addition, the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications. Overall, these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials, which is important for resource conservation and environmental protection.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds 石墨烯和氧化石墨烯对聚己内酯骨组织工程支架影响的体外研究
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-02 DOI: 10.1007/s42242-024-00280-8
Yanhao Hou, Weiguang Wang, Paulo Bartolo
{"title":"In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds","authors":"Yanhao Hou, Weiguang Wang, Paulo Bartolo","doi":"10.1007/s42242-024-00280-8","DOIUrl":"https://doi.org/10.1007/s42242-024-00280-8","url":null,"abstract":"<p>Polycaprolactone (PCL) scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field. Due to the intrinsic limitations of PCL, carbon nanomaterials are often investigated to reinforce the PCL scaffolds. Despite several studies that have been conducted on carbon nanomaterials, such as graphene (G) and graphene oxide (GO), certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds. This paper addresses this limitation by investigating both the nonbiological (element composition, surface, degradation, and thermal and mechanical properties) and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications. Results showed that the incorporation of G and GO increased surface properties (reduced modulus and wettability), material crystallinity, crystallization temperature, and degradation rate. However, the variations in compressive modulus, strength, surface hardness, and cell metabolic activity strongly depended on the type of reinforcement. Finally, a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight, fiber diameter, porosity, and mechanical properties as functions of degradation time and carbon nanomaterial concentrations. The results presented in this paper enable the design of three-dimensional (3D) bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress 基于离子液体的透明膜耦合人肺上皮芯片在呼吸机械压力下展示 PM0.5 污染效应
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-02 DOI: 10.1007/s42242-024-00289-z
Bilgesu Kaya, Ozlem Yesil-Celiktas
{"title":"Ionic liquid-based transparent membrane-coupled human lung epithelium-on-a-chip demonstrating PM0.5 pollution effect under breathing mechanostress","authors":"Bilgesu Kaya, Ozlem Yesil-Celiktas","doi":"10.1007/s42242-024-00289-z","DOIUrl":"https://doi.org/10.1007/s42242-024-00289-z","url":null,"abstract":"<p>The plausibility of human exposure to particulate matter (PM) has witnessed an increase within the last several years. PM of different sizes has been discovered in the atmosphere given the role of dust transport in weather and climate composition. As a regulator, the lung epithelium orchestrates the innate response to local damage. Herein, we developed a lung epithelium-on-a-chip platform consisting of easily moldable polydimethylsiloxane layers along with a thin, flexible, and transparent ionic liquid-based poly(hydroxyethyl) methacrylate gel membrane. The epithelium was formed through the culture of human lung epithelial cells (Calu-3) on this membrane. The mechanical stress at the air–liquid interface during inhalation/exhalation was recapitulated using an Arduino-based servo motor system, which applied a uniaxial tensile strength from the two sides of the chip with 10% strain and a frequency of 0.2 Hz. Subsequently, the administration of silica nanoparticles (PM0.5) with an average size of 463 nm to the on-chip platform under static, dynamic, and dynamic + mechanical stress (DMS) conditions demonstrated the effect of environmental pollutants on lung epithelium. The viability and release of lactate dehydrogenase were determined along with proinflammatory response through the quantification of tumor necrosis factor-α, which indicated alterations in the epithelium.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospinning/3D printing-integrated porous scaffold guides oral tissue regeneration in beagles 电纺丝/三维打印一体化多孔支架引导小猎犬口腔组织再生
IF 7.9 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-08-02 DOI: 10.1007/s42242-024-00311-4
Li Yuan, Chen Yuan, Jiawei Wei, Shue Jin, Yi Zuo, Yubao Li, Xinjie Liang, Jidong Li
{"title":"Electrospinning/3D printing-integrated porous scaffold guides oral tissue regeneration in beagles","authors":"Li Yuan, Chen Yuan, Jiawei Wei, Shue Jin, Yi Zuo, Yubao Li, Xinjie Liang, Jidong Li","doi":"10.1007/s42242-024-00311-4","DOIUrl":"https://doi.org/10.1007/s42242-024-00311-4","url":null,"abstract":"<p>The combined use of guided tissue/bone regeneration (GTR/GBR) membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues. Nevertheless, due to its displacement and poor mechanical support, bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects. The combination of GTR/GBR membrane with a three-dimensional (3D) porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects. In this study, a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid) (PLGA)/fish collagen (FC) electrospun membrane (PFC) to a 3D-printed PLGA/nano-hydroxyapatite (HA) (PHA) scaffold. The consistency of the composition (PLGA) ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold. In vitro cell experiments showed that the PFC membrane (upper layer) effectively prevented the unwanted migration of L929 cells. Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues. These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\u0000","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Jetting-based bioprinting: process, dispense physics, and applications 更正:基于喷射的生物打印:工艺、点胶物理和应用
IF 8.1 1区 医学
Bio-Design and Manufacturing Pub Date : 2024-07-27 DOI: 10.1007/s42242-024-00313-2
Wei Long Ng, V. Shkolnikov
{"title":"Correction: Jetting-based bioprinting: process, dispense physics, and applications","authors":"Wei Long Ng, V. Shkolnikov","doi":"10.1007/s42242-024-00313-2","DOIUrl":"https://doi.org/10.1007/s42242-024-00313-2","url":null,"abstract":"","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141797038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信