{"title":"用于全动态时域心肌细胞膜再愈合评估的集成纳米多孔电穿孔和传感电极阵列","authors":"Weiqin Sheng, Ying Li, Chunlian Qin, Zhonghai Zhang, Yuxiang Pan, Zhicheng Tong, Chong Teng, Xinwei Wei","doi":"10.1007/s42242-024-00308-z","DOIUrl":null,"url":null,"abstract":"<p>Intracellular electrophysiological research is vital for biological and medical research. Traditional planar microelectrode arrays (MEAs) have disadvantages in recording intracellular action potentials due to the loose cell–electrode interface. To investigate intracellular electrophysiological signals with high sensitivity, electroporation was used to obtain intracellular recordings. In this study, a biosensing system based on a nanoporous electrode array (NPEA) integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time. Moreover, nanoporous electrodes can induce the protrusion of cell membranes and enhance cell–electrode interfacial coupling, thereby facilitating effective electroporation. Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes, which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane. We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential, evaluate cardiomyocyte electroporation, and provide a new strategy for investigating cardiology pharmacological science.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment\",\"authors\":\"Weiqin Sheng, Ying Li, Chunlian Qin, Zhonghai Zhang, Yuxiang Pan, Zhicheng Tong, Chong Teng, Xinwei Wei\",\"doi\":\"10.1007/s42242-024-00308-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intracellular electrophysiological research is vital for biological and medical research. Traditional planar microelectrode arrays (MEAs) have disadvantages in recording intracellular action potentials due to the loose cell–electrode interface. To investigate intracellular electrophysiological signals with high sensitivity, electroporation was used to obtain intracellular recordings. In this study, a biosensing system based on a nanoporous electrode array (NPEA) integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time. Moreover, nanoporous electrodes can induce the protrusion of cell membranes and enhance cell–electrode interfacial coupling, thereby facilitating effective electroporation. Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes, which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane. We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential, evaluate cardiomyocyte electroporation, and provide a new strategy for investigating cardiology pharmacological science.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic abstract</h3>\\n\",\"PeriodicalId\":48627,\"journal\":{\"name\":\"Bio-Design and Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Design and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42242-024-00308-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Design and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42242-024-00308-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment
Intracellular electrophysiological research is vital for biological and medical research. Traditional planar microelectrode arrays (MEAs) have disadvantages in recording intracellular action potentials due to the loose cell–electrode interface. To investigate intracellular electrophysiological signals with high sensitivity, electroporation was used to obtain intracellular recordings. In this study, a biosensing system based on a nanoporous electrode array (NPEA) integrating electrical perforation and signal acquisition was established to dynamically and sensitively record the intracellular potential of cardiomyocytes over a long period of time. Moreover, nanoporous electrodes can induce the protrusion of cell membranes and enhance cell–electrode interfacial coupling, thereby facilitating effective electroporation. Electrophysiological signals over the entire recording process can be quantitatively and segmentally analyzed according to the signal changes, which can equivalently reflect the dynamic evolution of the electroporated cardiomyocyte membrane. We believe that the low-cost and high-performance nanoporous biosensing platform suggested in this study can dynamically record intracellular action potential, evaluate cardiomyocyte electroporation, and provide a new strategy for investigating cardiology pharmacological science.
期刊介绍:
Bio-Design and Manufacturing reports new research, new technology and new applications in the field of biomanufacturing, especially 3D bioprinting. Topics of Bio-Design and Manufacturing cover tissue engineering, regenerative medicine, mechanical devices from the perspectives of materials, biology, medicine and mechanical engineering, with a focus on manufacturing science and technology to fulfil the requirement of bio-design.