Biosensors-Basel最新文献

筛选
英文 中文
A Miniature Modular Fluorescence Flow Cytometry System. 微型模块化荧光流式细胞仪系统
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-08-16 DOI: 10.3390/bios14080395
Shaoqi Huang, Jiale Li, Li Wei, Lulu Zheng, Zheng Shi, Shiwei Guo, Bo Dai, Dawei Zhang, Songlin Zhuang
{"title":"A Miniature Modular Fluorescence Flow Cytometry System.","authors":"Shaoqi Huang, Jiale Li, Li Wei, Lulu Zheng, Zheng Shi, Shiwei Guo, Bo Dai, Dawei Zhang, Songlin Zhuang","doi":"10.3390/bios14080395","DOIUrl":"10.3390/bios14080395","url":null,"abstract":"<p><p>Fluorescence flow cytometry is a powerful instrument to distinguish cells or particles labelled with high-specificity fluorophores. However, traditional flow cytometry is complex, bulky, and inconvenient for users to adjust fluorescence channels. In this paper, we present a modular fluorescence flow cytometry (M-FCM) system in which fluorescence channels can be flexibly arranged. Modules for particle focusing and fluorescence detection were developed. After hydrodynamical focusing, the cells were measured in the detection modules, which were integrated with in situ illumination and fluorescence detection. The signal-to-noise ratio of the detection reached to 33.2 dB. The crosstalk among the fluorescence channels was eliminated. The M-FCM system was applied to evaluate cell viability in drug screening, agreeing well with the commercial cytometry. The modular cytometry presents several outstanding features: flexibility in setting fluorescence channels, cost efficiency, compact construction, ease of operation, and the potential to upgrade for multifunctional measurements. The modular cytometry provides a multifunctional platform for various biophysical measurements, e.g., electrical impedance and refractive-index detection. The proposed work paves an innovative avenue for the multivariate analysis of cellular characteristics.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Nanoparticle Electrochemical Collision for Monitoring Self-Assembly of Thiol Molecules on Au Nanoparticles. 用于监测金纳米粒子上硫醇分子自组装的单纳米粒子电化学碰撞。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-08-15 DOI: 10.3390/bios14080393
Yiyan Bai
{"title":"Single-Nanoparticle Electrochemical Collision for Monitoring Self-Assembly of Thiol Molecules on Au Nanoparticles.","authors":"Yiyan Bai","doi":"10.3390/bios14080393","DOIUrl":"10.3390/bios14080393","url":null,"abstract":"<p><p>A precise understanding of the self-assembly kinetics of small molecules on nanoparticles (NPs) can give greater control over the size and architecture of the functionalized NPs. Herein, a single-nanoparticle electrochemical collision (SNEC)-based method was developed to monitor the self-assembly processes of 6-mercapto-1-hexanol (6-MCH) and 1-hexanethiol (MCH) on Au NPs at the single-particle level, and to investigate the self-assembly kinetics exactly. Results showed that the self-assembly processes of both consisted of rapid adsorption and slow recombination. However, the adsorption rate of MCH was significantly lower than that of 6-MCH due to the poorer polarity. Also noteworthy is that the rapid adsorption of 6-MCH on Au NPs conformed to the Langmuir model of diffusion control. Hence, the proposed SNEC-based method could serve as a complementary method to research the self-assembly mechanism of functionalized NPs.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process. 用于高通量药物筛选过程的自动均匀球形体生成平台。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-08-15 DOI: 10.3390/bios14080392
Kelvin C C Pong, Yuen Sze Lai, Roy Chi Hang Wong, Alan Chun Kit Lee, Sam C T Chow, Jonathan C W Lam, Ho Pui Ho, Clarence T T Wong
{"title":"Automated Uniform Spheroid Generation Platform for High Throughput Drug Screening Process.","authors":"Kelvin C C Pong, Yuen Sze Lai, Roy Chi Hang Wong, Alan Chun Kit Lee, Sam C T Chow, Jonathan C W Lam, Ho Pui Ho, Clarence T T Wong","doi":"10.3390/bios14080392","DOIUrl":"10.3390/bios14080392","url":null,"abstract":"<p><p>Three-dimensional (3D) spheroid models are crucial for cancer research, offering more accurate insights into tumour biology and drug responses than traditional 2D cell cultures. However, inconsistent and low-throughput spheroid production has hindered their application in drug screening. Here, we present an automated high-throughput platform for a spheroid selection, fabrication, and sorting system (SFSS) to produce uniform gelatine-encapsulated spheroids (GESs) with high efficiency. SFSS integrates advanced imaging, analysis, photo-triggered fabrication, and microfluidic sorting to precisely control spheroid size, shape, and viability. Our data demonstrate that our SFSS can produce over 50 GESs with consistent size and circularity in 30 min with over 97% sorting accuracy while maintaining cell viability and structural integrity. We demonstrated that the GESs can be used for drug screening and potentially for various assays. Thus, the SFSS could significantly enhance the efficiency of generating uniform spheroids, facilitating their application in drug development to investigate complex biological systems and drug responses in a more physiologically relevant context.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie. 通过介电-质子混合纳米蝶翼实现高稳定性和低功耗纳米生物物体捕获。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-08-13 DOI: 10.3390/bios14080390
Paola Colapietro, Giuseppe Brunetti, Annarita di Toma, Francesco Ferrara, Maria Serena Chiriacò, Caterina Ciminelli
{"title":"High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.","authors":"Paola Colapietro, Giuseppe Brunetti, Annarita di Toma, Francesco Ferrara, Maria Serena Chiriacò, Caterina Ciminelli","doi":"10.3390/bios14080390","DOIUrl":"10.3390/bios14080390","url":null,"abstract":"<p><p>Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/μm<sup>2</sup> while preserving the temperature, chemical-biological properties, and shape of the biological sample.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications. 用于精确诊断的针形生物传感器:从台式开发到体外和体内应用。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-08-13 DOI: 10.3390/bios14080391
Ruier Xue, Fei Deng, Tianruo Guo, Alexander Epps, Nigel H Lovell, Mohit N Shivdasani
{"title":"Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications.","authors":"Ruier Xue, Fei Deng, Tianruo Guo, Alexander Epps, Nigel H Lovell, Mohit N Shivdasani","doi":"10.3390/bios14080391","DOIUrl":"10.3390/bios14080391","url":null,"abstract":"<p><p>To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and Fluorescence MnO2-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model. 基于过氧异构体β氧化基因敲除模型的骨关节炎电化学和荧光 MnO2 聚合物点电极传感器
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-07-22 DOI: 10.3390/bios14070357
Akhmad Irhas Robby, Songling Jiang, Eun-Jung Jin, Sung Young Park
{"title":"Electrochemical and Fluorescence MnO<sub>2</sub>-Polymer Dot Electrode Sensor for Osteoarthritis-Based Peroxisomal β-Oxidation Knockout Model.","authors":"Akhmad Irhas Robby, Songling Jiang, Eun-Jung Jin, Sung Young Park","doi":"10.3390/bios14070357","DOIUrl":"10.3390/bios14070357","url":null,"abstract":"<p><p>A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO<sub>2</sub>-immobilized-polymer-dot (MnO<sub>2</sub>@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal β-oxidation knockout model. The CoA-SH-responsive MnO<sub>2</sub>@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO<sub>2</sub> nanosheet on the electrode. The MnO<sub>2</sub>@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R<sub>24h</sub> = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R<sub>24h</sub> = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO<sub>2</sub> cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (<i>Acan</i>) and catabolic factors (<i>Adamts5</i>) in chondrocytes also confirmed the interaction between CoA-SH and the MnO<sub>2</sub>@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275033/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry. 利用快速扫描循环伏安法评估掺硼金刚石微电极的体外羟色胺诱导电化学堵塞性能
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-07-19 DOI: 10.3390/bios14070352
Mason L Perillo, Bhavna Gupta, James R Siegenthaler, Isabelle E Christensen, Brandon Kepros, Abu Mitul, Ming Han, Robert Rechenberg, Michael F Becker, Wen Li, Erin K Purcell
{"title":"Evaluation of In Vitro Serotonin-Induced Electrochemical Fouling Performance of Boron Doped Diamond Microelectrode Using Fast-Scan Cyclic Voltammetry.","authors":"Mason L Perillo, Bhavna Gupta, James R Siegenthaler, Isabelle E Christensen, Brandon Kepros, Abu Mitul, Ming Han, Robert Rechenberg, Michael F Becker, Wen Li, Erin K Purcell","doi":"10.3390/bios14070352","DOIUrl":"10.3390/bios14070352","url":null,"abstract":"<p><p>Fast-scan cyclic voltammetry (FSCV) is an electrochemical sensing technique that can be used for neurochemical sensing with high spatiotemporal resolution. Carbon fiber microelectrodes (CFMEs) are traditionally used as FSCV sensors. However, CFMEs are prone to electrochemical fouling caused by oxidative byproducts of repeated serotonin (5-HT) exposure, which makes them less suitable as chronic 5-HT sensors. Our team is developing a boron-doped diamond microelectrode (BDDME) that has previously been shown to be relatively resistant to fouling caused by protein adsorption (biofouling). We sought to determine if this BDDME exhibits resistance to electrochemical fouling, which we explored on electrodes fabricated with either femtosecond laser cutting or physical cleaving. We recorded the oxidation current response after 25 repeated injections of 5-HT in a flow-injection cell and compared the current drop from the first with the last injection. The 5-HT responses were compared with dopamine (DA), a neurochemical that is known to produce minimal fouling oxidative byproducts and has a stable repeated response. Physical cleaving of the BDDME yielded a reduction in fouling due to 5-HT compared with the CFME and the femtosecond laser cut BDDME. However, the femtosecond laser cut BDDME exhibited a large increase in sensitivity over the cleaved BDDME. An extended stability analysis was conducted for all device types following 5-HT fouling tests. This analysis demonstrated an improvement in the long-term stability of boron-doped diamond over CFMEs, as well as a diminishing sensitivity of the laser-cut BDDME over time. This work reports the electrochemical fouling performance of the BDDME when it is repeatedly exposed to DA or 5-HT, which informs the development of a chronic, diamond-based electrochemical sensor for long-term neurotransmitter measurements in vivo.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Efficient Bio-Receptor Layer Combined with a Plasmonic Plastic Optical Fiber Probe for Cortisol Detection in Saliva. 结合塑料光导纤维探针的高效生物受体层,用于检测唾液中的皮质醇。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-07-19 DOI: 10.3390/bios14070351
Francesco Arcadio, Mimimorena Seggio, Rosalba Pitruzzella, Luigi Zeni, Alessandra Maria Bossi, Nunzio Cennamo
{"title":"An Efficient Bio-Receptor Layer Combined with a Plasmonic Plastic Optical Fiber Probe for Cortisol Detection in Saliva.","authors":"Francesco Arcadio, Mimimorena Seggio, Rosalba Pitruzzella, Luigi Zeni, Alessandra Maria Bossi, Nunzio Cennamo","doi":"10.3390/bios14070351","DOIUrl":"10.3390/bios14070351","url":null,"abstract":"<p><p>Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body's response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, cortisol levels are monitored in blood or urine, but significant changes are also registered in sweat and saliva. In this work, a surface plasmon resonance probe based on a D-shaped plastic optical fiber was functionalized with a glucocorticoid receptor exploited as a highly efficient bioreceptor specific to cortisol. The developed plastic optical fiber biosensor was tested for cortisol detection in buffer and artificial saliva. The biosensor response showed very good selectivity towards other hormones and a detection limit of about 59 fM and 96 fM in phosphate saline buffer and artificial saliva, respectively. The obtained detection limit, with a rapid detection time (about 5 min) and a low-cost sensor system, paved the way for determining the cortisol concentration in saliva samples without any extraction process or sample pretreatment via a point-of-care test.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach. 拟态筛选:非 SELEX 方法的现有方法和未来趋势。
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-07-18 DOI: 10.3390/bios14070350
Zhihui Fang, Xiaorui Feng, Fan Tang, Han Jiang, Shuyuan Han, Ran Tao, Chenze Lu
{"title":"Aptamer Screening: Current Methods and Future Trend towards Non-SELEX Approach.","authors":"Zhihui Fang, Xiaorui Feng, Fan Tang, Han Jiang, Shuyuan Han, Ran Tao, Chenze Lu","doi":"10.3390/bios14070350","DOIUrl":"10.3390/bios14070350","url":null,"abstract":"<p><p>Aptamers are nucleic acid sequences that specifically bind with target molecules and are vital to applications such as biosensing, drug development, disease diagnostics, etc. The traditional selection procedure of aptamers is based on the Systematic Evolution of Ligands by an Exponential Enrichment (SELEX) process, which relies on repeating cycles of screening and amplification. With the rapid development of aptamer applications, RNA and XNA aptamers draw more attention than before. But their selection is troublesome due to the necessary reverse transcription and transcription process (RNA) or low efficiency and accuracy of enzymes for amplification (XNA). In light of this, we review the recent advances in aptamer selection methods and give an outlook on future development in a non-SELEX approach, which simplifies the procedure and reduces the experimental costs. We first provide an overview of the traditional SELEX methods mostly designed for screening DNA aptamers to introduce the common tools and methods. Then a section on the current screening methods for RNA and XNA is prepared to demonstrate the efforts put into screening these aptamers and the current difficulties. We further predict that the future trend of aptamer selection lies in non-SELEX methods that do not require nucleic acid amplification. We divide non-SELEX methods into an immobilized format and non-immobilized format and discuss how high-resolution partitioning methods could facilitate the further improvement of selection efficiency and accuracy.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. 基于聚苯胺/碳纳米管复合材料电纺纳米纤维的无标记电化学多巴胺生物传感器
IF 4.9 3区 工程技术
Biosensors-Basel Pub Date : 2024-07-18 DOI: 10.3390/bios14070349
Chanaporn Kaewda, Saengrawee Sriwichai
{"title":"Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites.","authors":"Chanaporn Kaewda, Saengrawee Sriwichai","doi":"10.3390/bios14070349","DOIUrl":"10.3390/bios14070349","url":null,"abstract":"<p><p>The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm<sup>-2</sup>·µM<sup>-1</sup> and 7.27 µA·cm<sup>-2</sup>·µM<sup>-1</sup> in the linear range of 50-500 nM (R<sup>2</sup> = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信