多模态无线机械声传感器的无电极心电监测。

IF 5.6 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL
Zhi Li, Fei Fei, Guanglie Zhang
{"title":"多模态无线机械声传感器的无电极心电监测。","authors":"Zhi Li, Fei Fei, Guanglie Zhang","doi":"10.3390/bios15080550","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384820/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.\",\"authors\":\"Zhi Li, Fei Fei, Guanglie Zhang\",\"doi\":\"10.3390/bios15080550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384820/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15080550\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15080550","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

持续的心血管监测对于心脏事件的早期检测至关重要,但传统的基于电极的ECG系统会引起皮肤刺激,不适合长期佩戴。我们提出了一种无电极ECG监测方法,该方法利用无线机械声学传感器捕获的同步心音图(PCG)和心震图(SCG)信号。PCG提供了精确的瓣膜事件时间,而SCG提供了机械背景,能够可靠地识别收缩期/舒张期间隔和病理模式。深度学习模型通过智能组合机械声传感器数据重建心电波形。其架构利用专门的神经网络组件来识别和关联来自多模态输入的关键心脏特征。与临床心电图相比,物联网传感器数据集的实验验证产生的平均Pearson相关性为0.96,RMSE为0.49 mV。通过PCG-SCG融合消除皮肤接触电极,该系统实现了强大的物联网兼容的日常心脏监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.

Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.

Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.

Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.

Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信