Shu-Sheng Lin, Chang-Yu Chen, Cheng-Ming Lin, Tsun-Chao Chiang, Yu-Siang Tang, Chang-Ching Yeh, Wei-Fan Hsu, Andrew M Wo
{"title":"A Mobile Sperm Analyzer with User-Friendly Microfluidic Chips for Rapid On-Farm Semen Evaluation.","authors":"Shu-Sheng Lin, Chang-Yu Chen, Cheng-Ming Lin, Tsun-Chao Chiang, Yu-Siang Tang, Chang-Ching Yeh, Wei-Fan Hsu, Andrew M Wo","doi":"10.3390/bios15060394","DOIUrl":"10.3390/bios15060394","url":null,"abstract":"<p><p>This study presents a mobile-based sperm analysis system featuring a user-friendly, droplet-loaded microfluidic chip that enables non-specialist users to perform the rapid and accurate quantitative evaluation of boar semen directly on the farm. The iSperm system integrates a tablet, optical module, heater, and real-time image analysis app to deliver automated measurements of sperm concentration, motility, and progressive motility in under one minute. Precision and user variability tests demonstrated high concordance with CASA and the hemocytometer, with minimal differences between trained and untrained users. A method comparison using 77 farm-collected samples confirmed agreement through Passing-Bablok regression and Bland-Altman analysis. ROC curve analyses further validated diagnostic accuracy for all parameters, with AUC values exceeding 0.95. The iSperm platform offers a reliable, user-friendly, and field-deployable solution for on-site semen quality assessment, improving decision-making in swine artificial insemination.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190950/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Research on Isothermal Signal Amplification Mediated MicroRNA Detection of Clinical Samples: Application to Disease Diagnosis.","authors":"Yu Han, Xin Sun, Sheng Cai","doi":"10.3390/bios15060395","DOIUrl":"10.3390/bios15060395","url":null,"abstract":"<p><p>With the rapid development of modern molecular biology, microRNA (miRNA) has been demonstrated to be closely associated with the occurrence and development of tumors and holds significant promise as a biomarker for the early detection, diagnosis, and treatment of cancer and other diseases. Therefore, detecting miRNA and analyzing it to determine its biological functions are of great significance for the screening and diagnosis of diseases. However, the intrinsic characteristics of miRNAs, including their low abundance, short sequence lengths, and high family-specific sequence homology, render traditional detection methods such as Northern blot hybridization, microarray use, and reverse transcription quantitative PCR (RT-qPCR) inadequate for meeting the stringent requirements of clinical detection in biological samples, a task requiring accuracy, rapidity, high detection power, specificity, and cost-effectiveness. In recent years, a substantial amount of effort has been put into developing innovative methodologies to address these challenges. In this review, we aim to provide a comprehensive overview of the recent advancements in these methodologies and their applications in clinical biological sample detection for disease diagnosis.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Small Toxic Molecule Detection and Elimination Using Molecularly Imprinted Polymers (MIPs).","authors":"Min Seok Kang, Jin-Ho Lee, Ki Su Kim","doi":"10.3390/bios15060393","DOIUrl":"10.3390/bios15060393","url":null,"abstract":"<p><p>Molecularly imprinted polymers (MIPs) provide selective, robust, and cost-effective platforms for the detection and removal of small toxic molecules in environmental, food, and biomedical contexts. This review offers a comprehensive overview of recent advancements in MIP-based systems, emphasizing critical design factors such as template selection, functional monomers, polymerization methods, and binding kinetics. The impact of these parameters on improving sensitivity, selectivity, and reusability is thoroughly examined. Additionally, current advantages, limitations, and enduring challenges are addressed. By highlighting emerging strategies and interdisciplinary innovations, this work aims to guide the development of more efficient and sustainable technologies for small-molecule toxin detection and remediation.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfan Chen, Jinxing Ye, Yuting Li, Zhe Luo, Jieqiang Luo, Xiangkui Wan
{"title":"A Multi-Domain Feature Fusion CNN for Myocardial Infarction Detection and Localization.","authors":"Yunfan Chen, Jinxing Ye, Yuting Li, Zhe Luo, Jieqiang Luo, Xiangkui Wan","doi":"10.3390/bios15060392","DOIUrl":"10.3390/bios15060392","url":null,"abstract":"<p><p>Myocardial infarction (MI) is a critical cardiovascular disease characterized by extensive myocardial necrosis occurring within a short timeframe. Traditional MI detection and localization techniques predominantly utilize single-domain features as input. However, relying solely on single-domain features of the electrocardiogram (ECG) proves challenging for accurate MI detection and localization due to the inability of these features to fully capture the complexity and variability in cardiac electrical activity. To address this, we propose a multi-domain feature fusion convolutional neural network (MFF-CNN) that integrates the time domain, frequency domain, and time-frequency domain features of ECG for automatic MI detection and localization. Initially, we generate 2D frequency domain and time-frequency domain images to combine with single-dimensional time domain features, forming multi-domain input features to overcome the limitations inherent in single-domain approaches. Subsequently, we introduce a novel MFF-CNN comprising a 1D CNN and two 2D CNNs for multi-domain feature learning and MI detection and localization. The experimental results demonstrate that in rigorous inter-patient validation, our method achieves 99.98% detection accuracy and 84.86% localization accuracy. This represents a 3.43% absolute improvement in detection and a 16.97% enhancement in localization over state-of-the-art methods. We believe that our approach will greatly benefit future research on cardiovascular disease.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MyμAlbumin: A Cutting-Edge Immunoturbidity-Based Device with Real-Time and Seamless Data Transmission for Early Detection of Chronic Kidney Disease at the Point of Care.","authors":"Wanna Chaijaroenkul, Napaporn Youngvises, Artitaya Thiengsusuk, Tullayakorn Plengsuriyakarn, Jakkrapong Suwanboriboon, Kridsada Sirisabhabhorn, Wanchai Meesiri, Kesara Na-Bangchang","doi":"10.3390/bios15060391","DOIUrl":"10.3390/bios15060391","url":null,"abstract":"<p><p>Microalbuminemia, characterized by a urinary albumin concentration between 20 and 200 mg/L, is a critical marker in assessing the risk of chronic kidney disease (CKD), diabetic nephropathy, and various other chronic conditions. Previously, we developed and validated the MyACR point-of-care (PoC) device, which facilitates the monitoring of CKD progression through real-time data transmission, thus enhancing patient management. This device utilizes a spectrophotometric dye-binding assay to measure albumin and creatinine concentrations in urine samples, providing an albumin-to-creatinine ratio (ACR) result. In the present study, we introduced a refined version of the PoC device, MyμAlbumin, designed to offer a simple, accurate, specific, sensitive, and rapid method for detecting microalbumin in urine as an early indicator of CKD and related diseases. The measurement is based on a specific immunoturbidimetric assay in a microcuvette, using a total solution volume of 125 µL (n = 5 for each validation test). The MyμAlbumin device demonstrated excellent performance, achieving high accuracy (%DMV ≤ 4.67) and precision (%CV < 5) and a strong correlation (R<sup>2</sup> > 0.995) with laboratory spectrophotometry (dye-binding assay) and reference hospital-based immunoturbidimetric assay. Its high sensitivity (LOQ = 5 mg/L) positions MyμAlbumin as a highly viable and cost-effective tool for clinical use. Additionally, the device supports real-time, seamless data transmission, making it ideal for integration into remote healthcare settings.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191223/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariana P Sousa, Ana Cláudia Pereira, Bárbara Correia, Anália do Carmo, Ana Miguel Matos, Maria Teresa Cruz, Felismina T C Moreira
{"title":"Cellulose-Based Colorimetric Test Strips for SARS-CoV-2 Antibody Detection.","authors":"Mariana P Sousa, Ana Cláudia Pereira, Bárbara Correia, Anália do Carmo, Ana Miguel Matos, Maria Teresa Cruz, Felismina T C Moreira","doi":"10.3390/bios15060390","DOIUrl":"10.3390/bios15060390","url":null,"abstract":"<p><p>The COVID-19 pandemic highlighted the need for rapid, cost-effective tools to monitor transmission and immune response. We developed two novel paper-based colorimetric biosensors using glutaraldehyde as a protein dye-its first use in this context. Glutaraldehyde reacts with amino groups to generate a brown color, enabling detection of SARS-CoV-2 antibodies. Wathman filter paper was functionalized with (3-aminopropyl)triethoxysilane (APTES) to immobilize virus-like particles (VLPs) and nucleocapsid protein (N-protein) as biorecognition elements. Upon incubation with antibody-containing samples, glutaraldehyde enabled colorimetric detection using RGB analysis in ImageJ software. Both sensors showed a linear correlation between antibody concentration and RGB values in buffer and serum. The VLP sensor responded linearly within the range of 1.0-20 µg/mL (green coordinate) in 500-fold diluted serum and the N-protein sensor from 1.0-40 µg/mL (blue coordinate) in 250-fold diluted serum. Both sensors demonstrated good selectivity, with glucose causing up to 18% interference. These biosensors represent a paradigm shift, as they provide a sensitive, user-friendly, and cost-effective option for semi-quantitative serological analysis. Furthermore, their versatility goes beyond the detection of SARS-CoV-2 antibodies and suggests broader applicability for various molecular targets.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Analysis of Shear Deformation Cytometry Based on Numerical Simulation Method.","authors":"Jun Wang, Jiahe Chen, Wenlai Tang, Shu Zhu","doi":"10.3390/bios15060389","DOIUrl":"10.3390/bios15060389","url":null,"abstract":"<p><p>The deformability of cells reflects their capacity for shape changes under external forces; however, the systematic investigation of deformation-influencing factors remains conspicuously underdeveloped. In this work, by using an incompressible neo-Hookean viscoelastic solid model, coupled with the Kelvin-Voigt model, the effects of flow rate, fluid viscosity, cell diameter, and shear modulus on cell deformability were systematically calculated and simulated. Additionally, the relationship between cell deformability and relaxation time within a dissipative process was also simulated. The results indicate that cell deformation is positively correlated with flow rate, with an approximate linear relationship between the deformation index and flow velocity. Fluid viscosity also significantly affects cell deformation, as an approximate linear relationship with the deformation index is observed. Cell diameter has a more prominent impact on cell deformability than do flow rate or fluid viscosity, with the deformation index increasing more rapidly than the cell diameter. As the Young's modulus increases, cell deformation decreases non-linearly. Cell deformation in the channel also gradually decreases with the increase in relaxation time. These findings enhance the understanding of cell biophysical characteristics and provide a basis for the precise control of cell deformation in deformability cytometry. This research holds significant implications for cell analysis-based animal health monitoring in the field of agriculture, as well as for other related areas.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muyang Zhang, Haonan Li, Xionghui Li, Zitong Ye, Qinghao He, Jie Zhou, Jiahua Zhong, Hao Chen, Xinyi Chen, Yixi Shi, Huiru Zhang, Lok Ting Chu, Weijin Guo
{"title":"Parylene-C Modified OSTE Molds for PDMS Microfluidic Chip Fabrication and Applications in Plasma Separation and Polymorphic Crystallization.","authors":"Muyang Zhang, Haonan Li, Xionghui Li, Zitong Ye, Qinghao He, Jie Zhou, Jiahua Zhong, Hao Chen, Xinyi Chen, Yixi Shi, Huiru Zhang, Lok Ting Chu, Weijin Guo","doi":"10.3390/bios15060388","DOIUrl":"10.3390/bios15060388","url":null,"abstract":"<p><p>This work presents a novel microfabrication process that addresses the interference of thiol groups on off-stoichiometry thiolene (OSTE) surfaces with the curing of polydimethylsiloxane (PDMS) by integrating the high-performance polymer Parylene-C. The process utilizes a Parylene-C coating to encapsulate the active thiol groups on the OSTE surface, enabling precise replication of PDMS microstructures. Based on this method, PDMS micropillar arrays and microwell arrays were successfully fabricated and applied in passive plasma separation and polymorphic crystal formation, respectively. The experimental results demonstrate that the plasma-separation chip efficiently isolates plasma from whole-blood samples with varying hematocrit (HCT) levels, achieving a separation efficiency of up to 57.5%. Additionally, the microwell array chip exhibits excellent stability and controllability in the growth of salt and protein crystals. This study not only provides a new approach for microfabricating microfluidic chips, but also highlights its potential applications in biomedical diagnostics and materials science.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aptamer-Functionalized Gold Nanoparticle Assay for Rapid Visual Detection of Norovirus in Stool Samples.","authors":"Maytawan Thanunchai, Sirikwan Sangboonruang, Natthawat Semakul, Kattareeya Kumthip, Niwat Maneekarn, Khajornsak Tragoolpua","doi":"10.3390/bios15060387","DOIUrl":"10.3390/bios15060387","url":null,"abstract":"<p><p>Norovirus (NoV), a leading cause of acute gastroenteritis worldwide, imposes significant morbidity and economic burdens across all age groups. Timely and accurate laboratory diagnosis is crucial for effective outbreak control and patient management. However, current diagnostic methods often require specialized equipment, technical expertise, and considerable time. To address these challenges, we developed a visual detection method utilizing gold nanoparticles (AuNPs) functionalized with the SMV25 aptamer specific to the NoV capsid protein. Detection relies on MgCl<sub>2</sub>-induced changes in the color and absorbance of these aptamer-functionalized AuNPs. The assay exhibited a good linear relationship between the A630/A520 absorbance ratio and NoV capsid protein concentration. Specifically, in a buffer system, this linearity (R<sup>2</sup> = 0.9026) was observed over a 0-32 ng/µL range with a limit of detection (LOD) of 9.65 ng/µL. Similarly, for NoV spiked into stool suspensions, a strong linear correlation (R<sup>2</sup> = 0.9170) was found across a 0-100 ng/µL range, with an LOD of 37.11 ng/µL. Evaluation with real stool samples yielded 77% sensitivity and 65% specificity. Notably, the assay demonstrated the highest sensitivity towards NoV GII.2 (100%), followed by GII.4 (78%). Scanning transmission electron microscopy confirmed the underlying aggregation and dispersion patterns of the aptamer-functionalized AuNPs. This colorimetric assay provides a simple, rapid, and visual method for NoV detection. Nevertheless, further enhancements are necessary to improve its performance in the direct testing of complex specimens, paving the way for future on-site detection applications, especially in resource-limited settings.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Cheng-Tse Tsai, Yu-Siang Chou, Chun-Wei Chiu, Yu-Te Liao, Dan Neal, Coy D Heldermon, Mateus G Rocha, Josephine F Esquivel-Upshaw
{"title":"A High-Sensitivity, Bluetooth-Enabled PCB Biosensor for HER2 and CA15-3 Protein Detection in Saliva: A Rapid, Non-Invasive Approach to Breast Cancer Screening.","authors":"Hsiao-Hsuan Wan, Chao-Ching Chiang, Fan Ren, Cheng-Tse Tsai, Yu-Siang Chou, Chun-Wei Chiu, Yu-Te Liao, Dan Neal, Coy D Heldermon, Mateus G Rocha, Josephine F Esquivel-Upshaw","doi":"10.3390/bios15060386","DOIUrl":"10.3390/bios15060386","url":null,"abstract":"<p><p>Breast cancer is a leading cause of cancer-related mortality worldwide, requiring efficient diagnostic tools for early detection and monitoring. Human epidermal growth factor receptor 2 (HER2) is a key biomarker for breast cancer classification, typically assessed using immunohistochemistry (IHC). However, IHC requires invasive biopsies and time-intensive laboratory procedures. In this study, we present a biosensor integrated with a reusable printed circuit board (PCB) and functionalized glucose test strips designed for rapid and non-invasive HER2 detection in saliva. The biosensor achieved a limit of detection of 10<sup>-15</sup> g/mL, 4 to 5 orders of magnitude more sensitive than the enzyme-linked immunosorbent assay (ELISA), with a sensitivity of 95/dec and a response time of 1 s. In addition to HER2, the biosensor also detects cancer antigen 15-3 (CA15-3), another clinically relevant breast cancer biomarker. The CA15-3 test demonstrated an equally low limit of detection, 10<sup>-15</sup> g/mL, and a higher sensitivity, 190/dec, further validated using human saliva samples. Clinical validation using 29 saliva samples confirmed our biosensor's ability to distinguish between healthy, in situ breast cancer, and invasive breast cancer patients. The system, which integrates a Bluetooth Low-Energy (BLE) module, enables remote monitoring, reduces hospital visits, and enhances accessibility for point-of-care and mobile screening applications. This ultra-sensitive, rapid, and portable biosensor can serve as a promising alternative for breast cancer detection and monitoring, particularly in rural and underserved communities.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}