{"title":"A Review of Machine Learning-Assisted Gas Sensor Arrays in Medical Diagnosis.","authors":"Yueting Yu, Xin Cao, Chenxi Li, Mingyue Zhou, Tianyu Liu, Jiang Liu, Lu Zhang","doi":"10.3390/bios15080548","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) present in human exhaled breath have emerged as promising biomarkers for non-invasive disease diagnosis. However, traditional VOC detection technology that relies on large instruments is not widely used due to high costs and cumbersome testing processes. Machine learning-assisted gas sensor arrays offer a compelling alternative by enabling the accurate identification of complex VOC mixtures through collaborative multi-sensor detection and advanced algorithmic analysis. This work systematically reviews the advanced applications of machine learning-assisted gas sensor arrays in medical diagnosis. The types and principles of sensors commonly employed for disease diagnosis are summarized, such as electrochemical, optical, and semiconductor sensors. Machine learning methods that can be used to improve the recognition ability of sensor arrays are systematically listed, including support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and principal component analysis (PCA). In addition, the research progress of sensor arrays combined with specific algorithms in the diagnosis of respiratory, metabolism and nutrition, hepatobiliary, gastrointestinal, and nervous system diseases is also discussed. Finally, we highlight current challenges associated with machine learning-assisted gas sensors and propose feasible directions for future improvement.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15080548","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Volatile organic compounds (VOCs) present in human exhaled breath have emerged as promising biomarkers for non-invasive disease diagnosis. However, traditional VOC detection technology that relies on large instruments is not widely used due to high costs and cumbersome testing processes. Machine learning-assisted gas sensor arrays offer a compelling alternative by enabling the accurate identification of complex VOC mixtures through collaborative multi-sensor detection and advanced algorithmic analysis. This work systematically reviews the advanced applications of machine learning-assisted gas sensor arrays in medical diagnosis. The types and principles of sensors commonly employed for disease diagnosis are summarized, such as electrochemical, optical, and semiconductor sensors. Machine learning methods that can be used to improve the recognition ability of sensor arrays are systematically listed, including support vector machines (SVM), random forests (RF), artificial neural networks (ANN), and principal component analysis (PCA). In addition, the research progress of sensor arrays combined with specific algorithms in the diagnosis of respiratory, metabolism and nutrition, hepatobiliary, gastrointestinal, and nervous system diseases is also discussed. Finally, we highlight current challenges associated with machine learning-assisted gas sensors and propose feasible directions for future improvement.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.