{"title":"Protecting Firefighters from Carcinogenic Exposure: Emerging Tools for PAH Detection and Decontamination.","authors":"Morteza Ghafar-Zadeh, Azadeh Amrollahi Biyouki, Negar Heidari, Niloufar Delfan, Parviz Norouzi, Sebastian Magierowski, Ebrahim Ghafar-Zadeh","doi":"10.3390/bios15080547","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are increasingly recognized as a major contributor to the occupational cancer risk among firefighters. In response, the National Fire Protection Association (NFPA) and other regulatory bodies have recommended rigorous decontamination protocols to minimize PAH exposure. Despite these efforts, a critical gap persists: the absence of real-time, field-deployable devices capable of detecting these invisible and toxic compounds during firefighting operations or within fire stations. Additionally, the lack of effective and optimized methods for the removal of these hazardous substances from the immediate environments of firefighters continues to pose a serious occupational health challenge. Although numerous studies have investigated PAH detection in environmental contexts, current technologies are still largely confined to laboratory settings and are unsuitable for field use. This review critically examines recent advances in PAH decontamination strategies for firefighting and explores alternative sensing solutions. We evaluate both conventional analytical methods, such as gas chromatography, high-performance liquid chromatography, and mass spectrometry, and emerging portable PAH detection technologies. By highlighting the limitations of existing systems and presenting novel sensing approaches, this paper aims to catalyze innovation in sensor development. Our ultimate goal is to inspire the creation of robust, field-deployable tools that enhance decontamination practices and significantly improve the health and safety of firefighters by reducing their long-term risks of cancer.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15080547","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are increasingly recognized as a major contributor to the occupational cancer risk among firefighters. In response, the National Fire Protection Association (NFPA) and other regulatory bodies have recommended rigorous decontamination protocols to minimize PAH exposure. Despite these efforts, a critical gap persists: the absence of real-time, field-deployable devices capable of detecting these invisible and toxic compounds during firefighting operations or within fire stations. Additionally, the lack of effective and optimized methods for the removal of these hazardous substances from the immediate environments of firefighters continues to pose a serious occupational health challenge. Although numerous studies have investigated PAH detection in environmental contexts, current technologies are still largely confined to laboratory settings and are unsuitable for field use. This review critically examines recent advances in PAH decontamination strategies for firefighting and explores alternative sensing solutions. We evaluate both conventional analytical methods, such as gas chromatography, high-performance liquid chromatography, and mass spectrometry, and emerging portable PAH detection technologies. By highlighting the limitations of existing systems and presenting novel sensing approaches, this paper aims to catalyze innovation in sensor development. Our ultimate goal is to inspire the creation of robust, field-deployable tools that enhance decontamination practices and significantly improve the health and safety of firefighters by reducing their long-term risks of cancer.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.