{"title":"Electrode-Free ECG Monitoring with Multimodal Wireless Mechano-Acoustic Sensors.","authors":"Zhi Li, Fei Fei, Guanglie Zhang","doi":"10.3390/bios15080550","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12384820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15080550","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous cardiovascular monitoring is essential for the early detection of cardiac events, but conventional electrode-based ECG systems cause skin irritation and are unsuitable for long-term wear. We propose an electrode-free ECG monitoring approach that leverages synchronized phonocardiogram (PCG) and seismocardiogram (SCG) signals captured by wireless mechano-acoustic sensors. PCG provides precise valvular event timings, while SCG provides mechanical context, enabling the robust identification of systolic/diastolic intervals and pathological patterns. A deep learning model reconstructs ECG waveforms by intelligently combining mechano-acoustic sensor data. Its architecture leverages specialized neural network components to identify and correlate key cardiac signatures from multimodal inputs. Experimental validation on an IoT sensor dataset yields a mean Pearson correlation of 0.96 and an RMSE of 0.49 mV compared to clinical ECGs. By eliminating skin-contact electrodes through PCG-SCG fusion, this system enables robust IoT-compatible daily-life cardiac monitoring.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.