{"title":"A case for community metadata standards in cryo-electron tomography.","authors":"William Wan","doi":"10.1042/ETLS20240013","DOIUrl":"https://doi.org/10.1042/ETLS20240013","url":null,"abstract":"<p><p>In the past decade, cryo-electron microscopy and single particle analysis (SPA) have quickly become key methods in structural biology. In particular, increased access to equipment and streamlined software has enabled new users to successfully carry out SPA projects. At the same time, cryo-electron tomography (cryo-ET) has also made great technical strides, most notably with cellular cryo-ET. While many challenges remain, developments in hardware and automation have made cellular cryo-ET specimen preparation and data collection more accessible than ever. There is also a growing field of cryo-ET software developers, but the wide variety of biological specimens and scientific goals that can be pursued using cryo-ET makes it difficult to develop processing workflows analogous to those in SPA; this becomes a major barrier to entry for new users. In this perspective, I make a case that the development of standardized metadata can play a key role in reducing such barriers and allow for an ecosystem that enables new users to enter the field while retaining a diversity of processing approaches.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"9 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular tags for electron cryo-tomography.","authors":"Emma Silvester, Lindsay A Baker","doi":"10.1042/ETLS20240006","DOIUrl":"https://doi.org/10.1042/ETLS20240006","url":null,"abstract":"<p><p>Electron cryotomography enables the direct visualisation of biological specimens without stains or fixation, revealing complex molecular landscapes at high resolution. However, identifying specific proteins within these crowded environments is challenging. Molecular tagging offers a promising solution by attaching visually distinctive markers to proteins of interest, differentiating them from the background. This review explores available tagging strategies, including gold nanoparticles, metal-binding proteins, nucleic acid nanostructures and protein-based tags. The identification and targeting strategies for each approach are discussed, highlighting their respective advantages and limitations. Future directions for advancing these tagging techniques to expand their applicability to broader research questions are also considered.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex Rivera-Millot, Luke B Harrison, Frédéric J Veyrier
{"title":"Copper management strategies in obligate bacterial symbionts: balancing cost and benefit.","authors":"Alex Rivera-Millot, Luke B Harrison, Frédéric J Veyrier","doi":"10.1042/ETLS20230113","DOIUrl":"10.1042/ETLS20230113","url":null,"abstract":"<p><p>Bacteria employ diverse mechanisms to manage toxic copper in their environments, and these evolutionary strategies can be divided into two main categories: accumulation and rationalization of metabolic pathways. The strategies employed depend on the bacteria's lifestyle and environmental context, optimizing the metabolic cost-benefit ratio. Environmental and opportunistically pathogenic bacteria often possess an extensive range of copper regulation systems in order to respond to variations in copper concentrations and environmental conditions, investing in diversity and/or redundancy as a safeguard against uncertainty. In contrast, obligate symbiotic bacteria, such as Neisseria gonorrhoeae and Bordetella pertussis, tend to have specialized and more parsimonious copper regulation systems designed to function in the relatively stable host environment. These evolutionary strategies maintain copper homeostasis even in challenging conditions like encounters within phagocytic cells. These examples highlight the adaptability of bacterial copper management systems, tailored to their specific lifestyles and environmental requirements, in the context of an evolutionary the trade-off between benefits and energy costs.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"29-35"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metalloproteome plasticity - a factor in bacterial pathogen adaptive responses?","authors":"Alastair G McEwan","doi":"10.1042/ETLS20230116","DOIUrl":"10.1042/ETLS20230116","url":null,"abstract":"<p><p>Through homeostatic processes, bacterial cells maintain intracytoplasmic metal ions at concentrations which enable the 'correct' metal to be inserted into an enzyme, thereby ensuring function. However, fluctuations in intracytoplasmic metal ion concentrations mean that under different conditions certain enzymes may contain different metals at their active site. This perspective describes examples of such cases and suggests that metalloproteome plasticity may contribute to the dynamic adaptation of pathogens to stresses in the host environment.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"57-60"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy.","authors":"Calum M Webster, Mark Shepherd","doi":"10.1042/ETLS20230114","DOIUrl":"10.1042/ETLS20230114","url":null,"abstract":"<p><p>It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"37-43"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136399667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Hosmer, Alastair G McEwan, Ulrike Kappler
{"title":"Bacterial acetate metabolism and its influence on human epithelia.","authors":"Jennifer Hosmer, Alastair G McEwan, Ulrike Kappler","doi":"10.1042/ETLS20220092","DOIUrl":"10.1042/ETLS20220092","url":null,"abstract":"<p><p>Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"1-13"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9210540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis.","authors":"Aimee D Potter, Alison K Criss","doi":"10.1042/ETLS20220111","DOIUrl":"10.1042/ETLS20220111","url":null,"abstract":"<p><p>Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"15-28"},"PeriodicalIF":3.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9889540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew J Sullivan, Ignacio Terán, Kelvin G K Goh, Glen C Ulett
{"title":"Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria.","authors":"Matthew J Sullivan, Ignacio Terán, Kelvin G K Goh, Glen C Ulett","doi":"10.1042/ETLS20230115","DOIUrl":"10.1042/ETLS20230115","url":null,"abstract":"<p><p>Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"45-56"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sleep and cardiovascular disease.","authors":"Michelle A Miller, Nathan E Howarth","doi":"10.1042/ETLS20230111","DOIUrl":"10.1042/ETLS20230111","url":null,"abstract":"<p><p>This review centres around the recent evidence in examining the intersection of sleep and cardiovascular disease (CVD). Sleep in this review will be further subdivided to consider both sleep quantity and quality along and will also consider some of the more common sleep disorders, such as insomnia and obstructive sleep apnoea, in the context of CVD. Sleep disorders have been further explored in several specific populations which are both at risk of sleep disorders and CVD. Secondly, the review will present some of the risk factors for CVD that are affected by sleep and sleep disorders which include hypertension, diabetes, and obesity. It will also examine the potential underlying mechanisms including inflammation, appetite control, endocrine, and genetic processes that are affected by sleep and sleep disorders leading to increased risk of CVD development. In addition, we will consider the observed bi-directional relationships between sleep and cardiovascular risk factors. For example, obesity, a risk factor for CVD can be affected by sleep, but in turn can increase the risk of certain sleep disorder development which disrupts sleep, leading to further risk of obesity development and increased CVD risk. Finally, the review will explore emerging evidence around lifestyle interventions that have included a sleep component and how it impacts the management of CVD risk factor. The need for increased awareness of the health effects of poor sleep and sleep disorders will be discussed alongside the need for policy intervention to improve sleep to facilitate better health and well-being.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"457-466"},"PeriodicalIF":3.8,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138812145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcus O Harrington, Sarah Reeve, Joanne L Bower, Louis Renoult
{"title":"How do the sleep features that characterise depression impact memory?","authors":"Marcus O Harrington, Sarah Reeve, Joanne L Bower, Louis Renoult","doi":"10.1042/ETLS20230100","DOIUrl":"10.1042/ETLS20230100","url":null,"abstract":"<p><p>Depression is associated with general sleep disturbance and abnormalities in sleep physiology. For example, compared with control subjects, depressed patients exhibit lower sleep efficiency, longer rapid eye movement (REM) sleep duration, and diminished slow-wave activity during non-REM sleep. A separate literature indicates that depression is also associated with many distinguishing memory characteristics, including emotional memory bias, overgeneral autobiographical memory, and impaired memory suppression. The sleep and memory features that hallmark depression may both contribute to the onset and maintenance of the disorder. Despite our rapidly growing understanding of the intimate relationship between sleep and memory, our comprehension of how sleep and memory interact in the aetiology of depression remains poor. In this narrative review, we consider how the sleep signatures of depression could contribute to the accompanying memory characteristics.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"499-512"},"PeriodicalIF":3.4,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}