{"title":"基于微藻的生物柴油:整合人工智能、CRISPR和纳米技术用于可持续生物燃料开发。","authors":"Fariha Kanwal, Ambreen Aslam, Angel A J Torriero","doi":"10.1042/ETLS20240004","DOIUrl":null,"url":null,"abstract":"<p><p>Microalgae are a promising feedstock for biodiesel due to their rapid growth, high lipid content and ability to use non-arable land and wastewater. This review synthesises recent advances in artificial intelligence (AI)-driven strain optimisation, engineering, nanotechnology-assisted processing, and life cycle and technoeconomic insights to evaluate pathways for industrialisation. Over the past decade (2015-2024), genetic engineering and, more recently, AI-guided strain selection have improved lipid productivity by up to 40%. Cultivation advances, including hybrid photobioreactor-open pond systems and precision pH/CO2 control, have enhanced biomass yields while reducing costs. Innovation in lipid extraction, such as supercritical CO2 and microwave-assisted methods, now achieves >90% yields with lower toxicity, while magnetic nanoparticle-assisted harvesting and electroflocculation have reduced energy inputs by 20-30%. Life cycle analyses (net energy ratio ~2.5) and integration of high-value co-products (e.g. pigments and proteins) underscore the need to align biological innovations with techno-economic feasibility. This review uniquely integrates advances in AI, CRISPR and nanotechnology with life cycle and techno-economic perspectives, providing a comprehensive framework that links laboratory-scale innovation to industrial feasibility and positions microalgal biodiesel as a viable contributor to global decarbonisation strategies.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microalgae-based biodiesel: integrating AI, CRISPR and nanotechnology for sustainable biofuel development.\",\"authors\":\"Fariha Kanwal, Ambreen Aslam, Angel A J Torriero\",\"doi\":\"10.1042/ETLS20240004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microalgae are a promising feedstock for biodiesel due to their rapid growth, high lipid content and ability to use non-arable land and wastewater. This review synthesises recent advances in artificial intelligence (AI)-driven strain optimisation, engineering, nanotechnology-assisted processing, and life cycle and technoeconomic insights to evaluate pathways for industrialisation. Over the past decade (2015-2024), genetic engineering and, more recently, AI-guided strain selection have improved lipid productivity by up to 40%. Cultivation advances, including hybrid photobioreactor-open pond systems and precision pH/CO2 control, have enhanced biomass yields while reducing costs. Innovation in lipid extraction, such as supercritical CO2 and microwave-assisted methods, now achieves >90% yields with lower toxicity, while magnetic nanoparticle-assisted harvesting and electroflocculation have reduced energy inputs by 20-30%. Life cycle analyses (net energy ratio ~2.5) and integration of high-value co-products (e.g. pigments and proteins) underscore the need to align biological innovations with techno-economic feasibility. This review uniquely integrates advances in AI, CRISPR and nanotechnology with life cycle and techno-economic perspectives, providing a comprehensive framework that links laboratory-scale innovation to industrial feasibility and positions microalgal biodiesel as a viable contributor to global decarbonisation strategies.</p>\",\"PeriodicalId\":46394,\"journal\":{\"name\":\"Emerging Topics in Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Topics in Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/ETLS20240004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20240004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Microalgae-based biodiesel: integrating AI, CRISPR and nanotechnology for sustainable biofuel development.
Microalgae are a promising feedstock for biodiesel due to their rapid growth, high lipid content and ability to use non-arable land and wastewater. This review synthesises recent advances in artificial intelligence (AI)-driven strain optimisation, engineering, nanotechnology-assisted processing, and life cycle and technoeconomic insights to evaluate pathways for industrialisation. Over the past decade (2015-2024), genetic engineering and, more recently, AI-guided strain selection have improved lipid productivity by up to 40%. Cultivation advances, including hybrid photobioreactor-open pond systems and precision pH/CO2 control, have enhanced biomass yields while reducing costs. Innovation in lipid extraction, such as supercritical CO2 and microwave-assisted methods, now achieves >90% yields with lower toxicity, while magnetic nanoparticle-assisted harvesting and electroflocculation have reduced energy inputs by 20-30%. Life cycle analyses (net energy ratio ~2.5) and integration of high-value co-products (e.g. pigments and proteins) underscore the need to align biological innovations with techno-economic feasibility. This review uniquely integrates advances in AI, CRISPR and nanotechnology with life cycle and techno-economic perspectives, providing a comprehensive framework that links laboratory-scale innovation to industrial feasibility and positions microalgal biodiesel as a viable contributor to global decarbonisation strategies.