Yan Zhang, Haylie Andrews, Judith Eglitis-Sexton, Ian Godwin, Miloš Tanurdžić, Peter A Crisp
{"title":"Epigenome guided crop improvement: current progress and future opportunities.","authors":"Yan Zhang, Haylie Andrews, Judith Eglitis-Sexton, Ian Godwin, Miloš Tanurdžić, Peter A Crisp","doi":"10.1042/ETLS20210258","DOIUrl":"https://doi.org/10.1042/ETLS20210258","url":null,"abstract":"<p><p>Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term 'epigenome guided' improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 2","pages":"141-151"},"PeriodicalIF":3.8,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9178186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How ‘omics technologies can drive plant engineering, ecosystem surveillance, human and animal health","authors":"Bhavna Hurgobin, Mathew G. Lewsey","doi":"10.1042/ETLS20220020","DOIUrl":"https://doi.org/10.1042/ETLS20220020","url":null,"abstract":"‘Omics describes a broad collection of research tools and techniques that enable researchers to collect data about biological systems at a very large, or near-complete, scale. These include sequencing of individual and community genomes (genomics, metagenomics), characterization and quantification of gene expression (transcriptomics), metabolite abundance (metabolomics), protein content (proteomics) and phosphorylation (phospho-proteomics), amongst many others. Though initially exploited as tools for fundamental discovery, ‘omics techniques are now used extensively in applied and translational research, for example in plant and animal breeding, biomarker development and drug discovery. In this collection of reviews, we aimed to introduce readers to current and future applications of ‘omics technologies to solve real-world problems.","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"137 - 139"},"PeriodicalIF":3.8,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47778046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Jo Muhich, Amanda Agosto-Ramos, D. Kliebenstein
{"title":"The ease and complexity of identifying and using specialized metabolites for crop engineering","authors":"Anna Jo Muhich, Amanda Agosto-Ramos, D. Kliebenstein","doi":"10.1042/ETLS20210248","DOIUrl":"https://doi.org/10.1042/ETLS20210248","url":null,"abstract":"Plants produce a broad variety of specialized metabolites with distinct biological activities and potential applications. Despite this potential, most biosynthetic pathways governing specialized metabolite production remain largely unresolved across the plant kingdom. The rapid advancement of genetics and biochemical tools has enhanced our ability to identify plant specialized metabolic pathways. Further advancements in transgenic technology and synthetic biology approaches have extended this to a desire to design new pathways or move existing pathways into new systems to address long-running difficulties in crop systems. This includes improving abiotic and biotic stress resistance, boosting nutritional content, etc. In this review, we assess the potential and limitations for (1) identifying specialized metabolic pathways in plants with multi-omics tools and (2) using these enzymes in synthetic biology or crop engineering. The goal of these topics is to highlight areas of research that may need further investment to enhance the successful application of synthetic biology for exploiting the myriad of specialized metabolic pathways.","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"153 - 162"},"PeriodicalIF":3.8,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43955818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bleaching physiology: who's the 'weakest link' - host vs. symbiont?","authors":"Stéphane Roberty, Jean-Christophe Plumier","doi":"10.1042/ETLS20210228","DOIUrl":"https://doi.org/10.1042/ETLS20210228","url":null,"abstract":"<p><p>Environmental stress, such as an increase in the sea surface temperature, triggers coral bleaching, a profound dysfunction of the mutualist symbiosis between the host cnidarians and their photosynthetic dinoflagellates of the Family Symbiodiniaceae. Because of climate change, mass coral bleaching events will increase in frequency and severity in the future, threatening the persistence of this iconic marine ecosystem at global scale. Strategies adapted to coral reefs preservation and restoration may stem from the identification of the succession of events and of the different molecular and cellular contributors to the bleaching phenomenon. To date, studies aiming to decipher the cellular cascade leading to temperature-related bleaching, emphasized the involvement of reactive species originating from compromised bioenergetic pathways (e.g. cellular respiration and photosynthesis). These molecules are responsible for damage to various cellular components causing the dysregulation of cellular homeostasis and the breakdown of symbiosis. In this review, we synthesize the current knowledge available in the literature on the cellular mechanisms caused by thermal stress, which can initiate or participate in the cell cascade leading to the loss of symbionts, with a particular emphasis on the role of each partner in the initiating processes.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"17-32"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39934194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher E Cornwall, Steeve Comeau, Hollie Putnam, Verena Schoepf
{"title":"Impacts of ocean warming and acidification on calcifying coral reef taxa: mechanisms responsible and adaptive capacity.","authors":"Christopher E Cornwall, Steeve Comeau, Hollie Putnam, Verena Schoepf","doi":"10.1042/ETLS20210226","DOIUrl":"https://doi.org/10.1042/ETLS20210226","url":null,"abstract":"<p><p>Ocean warming (OW) and acidification (OA) are two of the greatest global threats to the persistence of coral reefs. Calcifying reef taxa such as corals and coralline algae provide the essential substrate and habitat in tropical reefs but are at particular risk due to their susceptibility to both OW and OA. OW poses the greater threat to future reef growth and function, via its capacity to destabilise the productivity of both taxa, and to cause mass bleaching events and mortality of corals. Marine heatwaves are projected to increase in frequency, intensity, and duration over the coming decades, raising the question of whether coral reefs will be able to persist as functioning ecosystems and in what form. OA should not be overlooked, as its negative impacts on the calcification of reef-building corals and coralline algae will have consequences for global reef accretion. Given that OA can have negative impacts on the reproduction and early life stages of both coralline algae and corals, the interdependence of these taxa may result in negative feedbacks for reef replenishment. However, there is little evidence that OA causes coral bleaching or exacerbates the effects of OW on coral bleaching. Instead, there is some evidence that OA alters the photo-physiology of both taxa. Tropical coralline algal possess shorter generation times than corals, which could enable more rapid evolutionary responses. Future reefs will be dominated by taxa with shorter generation times and high plasticity, or those individuals inherently resistant and resilient to both marine heatwaves and OA.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"1-9"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39623806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey S Shima, Craig W Osenberg, Suzanne H Alonzo, Erik G Noonburg, Stephen E Swearer
{"title":"How moonlight shapes environments, life histories, and ecological interactions on coral reefs.","authors":"Jeffrey S Shima, Craig W Osenberg, Suzanne H Alonzo, Erik G Noonburg, Stephen E Swearer","doi":"10.1042/ETLS20210237","DOIUrl":"https://doi.org/10.1042/ETLS20210237","url":null,"abstract":"<p><p>The lunar cycle drives variation in nocturnal brightness. For the epipelagic larvae of coral reef organisms, nocturnal illumination may have widespread and underappreciated consequences. At sea, the onset of darkness coincides with an influx of mesopelagic organisms to shallow water (i.e. 'diel vertical migrants') that include predators (e.g. lanternfishes) and prey (zooplankton) of zooplanktivorous coral reef larvae. Moonlight generally suppresses this influx, but lunar periodicity in the timing and intensity of nocturnal brightness may affect vertically migrating predators and prey differently. A major turnover of species occurs at sunset on the reef, with diurnal species seeking shelter and nocturnal species emerging to hunt. The hunting ability of nocturnal reef-based predators is aided by the light of the moon. Consequently, variation in nocturnal illumination is likely to shape the timing of reproduction, larval development, and settlement for many coral reef organisms. This synthesis underscores the potential importance of trophic linkages between coral reefs and adjacent pelagic ecosystems, facilitated by the diel migrations of mesopelagic organisms and the ontogenetic migrations of coral reef larvae. Research is needed to better understand the effects of lunar cycles on life-history strategies, and the potentially disruptive effects of light pollution, turbidity, and climate-driven changes to nocturnal cloud cover. These underappreciated threats may alter patterns of nocturnal illumination that have shaped the evolutionary history of many coral reef organisms, with consequences for larval survival and population replenishment that could rival or exceed other effects arising from climate change.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"45-56"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39812987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coral-microbe interactions: their importance to reef function and survival.","authors":"Cawa Tran","doi":"10.1042/ETLS20210229","DOIUrl":"https://doi.org/10.1042/ETLS20210229","url":null,"abstract":"<p><p>Many different microorganisms associate with the coral host in a single entity known as the holobiont, and their interactions with the host contribute to coral health, thereby making them a fundamental part of reef function, survival, and conservation. As corals continue to be susceptible to bleaching due to environmental stress, coral-associated bacteria may have a potential role in alleviating bleaching. This review provides a synthesis of the various roles bacteria have in coral physiology and development, and explores the possibility that changes in the microbiome with environmental stress could have major implications in how corals acclimatize and survive. Recent studies on the interactions between the coral's algal and bacterial symbionts elucidate how bacteria may stabilize algal health and, therefore, mitigate bleaching. A summary of the innovative tools and experiments to examine host-microbe interactions in other cnidarians (a temperate coral, a jellyfish, two anemones, and a freshwater hydroid) is offered in this review to delineate our current knowledge of mechanisms underlying microbial establishment and maintenance in the animal host. A better understanding of these mechanisms may enhance the success of maintaining probiotics long-term in corals as a conservation strategy.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"33-44"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39888977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management.","authors":"David J Suggett, Madeleine J H van Oppen","doi":"10.1042/ETLS20210240","DOIUrl":"https://doi.org/10.1042/ETLS20210240","url":null,"abstract":"<p><p>Coral reef restoration activity is accelerating worldwide in efforts to offset the rate of reef health declines. Many advances have already been made in restoration practices centred on coral biology (coral restoration), and particularly those that look to employ the high adaptive state and capacity of corals in order to ensure that efforts rebuilding coral biomass also equip reefs with enhanced resilience to future stress. We horizon scan the state-of-play for the many coral restoration innovations already underway across the complex life cycle for corals that spans both asexual and sexual reproduction - assisted evolution (manipulations targeted to the coral host and host-associated microbes), biobanking, as well as scalable coral propagation and planting - and how these innovations are in different stages of maturity to support new 21st century reef management frameworks. Realising the potential for coral restoration tools as management aids undoubtedly rests on validating different approaches as their application continues to scale. Whilst the ecosystem service responses to increased scaling still largely remain to be seen, coral restoration has already delivered immense new understanding of coral and coral-associated microbial biology that has long lagged behind advances in other reef sciences.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"125-136"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9023016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39888978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regime shifts on tropical coral reef ecosystems: future trajectories to animal-dominated states in response to anthropogenic stressors.","authors":"James J Bell, Valerio Micaroni, Francesca Strano","doi":"10.1042/ETLS20210231","DOIUrl":"https://doi.org/10.1042/ETLS20210231","url":null,"abstract":"<p><p>Despite the global focus on the occurrence of regime shifts on shallow-water tropical coral reefs over the last two decades, most of this research continues to focus on changes to algal-dominated states. Here, we review recent reports (in approximately the last decade) of regime shifts to states dominated by animal groups other than zooxanthellate Scleractinian corals. We found that while there have been new reports of regime shifts to reefs dominated by Ascidacea, Porifera, Octocorallia, Zoantharia, Actiniaria and azooxanthellate Scleractinian corals, some of these changes occurred many decades ago, but have only just been reported in the literature. In most cases, these reports are over small to medium spatial scales (<4 × 104 m2 and 4 × 104 to 2 × 106 m2, respectively). Importantly, from the few studies where we were able to collect information on the persistence of the regime shifts, we determined that these non-scleractinian states are generally unstable, with further changes since the original regime shift. However, these changes were not generally back to coral dominance. While there has been some research to understand how sponge- and octocoral-dominated systems may function, there is still limited information on what ecosystem services have been disrupted or lost as a result of these shifts. Given that many coral reefs across the world are on the edge of tipping points due to increasing anthropogenic stress, we urgently need to understand the consequences of non-algal coral reef regime shifts.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"95-106"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39829400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microplastics: impacts on corals and other reef organisms.","authors":"Olga Pantos","doi":"10.1042/ETLS20210236","DOIUrl":"https://doi.org/10.1042/ETLS20210236","url":null,"abstract":"<p><p>Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1-5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":"6 1","pages":"81-93"},"PeriodicalIF":3.8,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/29/ETLS-6-81.PMC9023018.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39599358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}