{"title":"How ‘omics technologies can drive plant engineering, ecosystem surveillance, human and animal health","authors":"Bhavna Hurgobin, Mathew G. Lewsey","doi":"10.1042/ETLS20220020","DOIUrl":null,"url":null,"abstract":"‘Omics describes a broad collection of research tools and techniques that enable researchers to collect data about biological systems at a very large, or near-complete, scale. These include sequencing of individual and community genomes (genomics, metagenomics), characterization and quantification of gene expression (transcriptomics), metabolite abundance (metabolomics), protein content (proteomics) and phosphorylation (phospho-proteomics), amongst many others. Though initially exploited as tools for fundamental discovery, ‘omics techniques are now used extensively in applied and translational research, for example in plant and animal breeding, biomarker development and drug discovery. In this collection of reviews, we aimed to introduce readers to current and future applications of ‘omics technologies to solve real-world problems.","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20220020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
‘Omics describes a broad collection of research tools and techniques that enable researchers to collect data about biological systems at a very large, or near-complete, scale. These include sequencing of individual and community genomes (genomics, metagenomics), characterization and quantification of gene expression (transcriptomics), metabolite abundance (metabolomics), protein content (proteomics) and phosphorylation (phospho-proteomics), amongst many others. Though initially exploited as tools for fundamental discovery, ‘omics techniques are now used extensively in applied and translational research, for example in plant and animal breeding, biomarker development and drug discovery. In this collection of reviews, we aimed to introduce readers to current and future applications of ‘omics technologies to solve real-world problems.