Microplastics: impacts on corals and other reef organisms.

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olga Pantos
{"title":"Microplastics: impacts on corals and other reef organisms.","authors":"Olga Pantos","doi":"10.1042/ETLS20210236","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1-5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d8/29/ETLS-6-81.PMC9023018.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20210236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1-5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.

Abstract Image

Abstract Image

微塑料:对珊瑚和其他珊瑚礁生物的影响。
塑料污染是一个日益严重的全球性问题。除了塑料颗粒从直接来源和通过物品的自然磨损不断流入环境之外,已经存在的塑料有可能进一步分解,因此提供了巨大的塑料颗粒来源。随着塑料生产水平的持续上升,进入海洋环境的塑料含量也随之增加,我们必须了解其影响。有证据表明,微塑料和纳米塑料(MNP)对世界上所有的海洋生态系统和生物群构成了严重威胁,对所有分类群和营养水平产生了个体到生态系统的影响,尽管这些影响尚未完全了解。塑料微粒(议员;0.1-5毫米)一直被发现与所研究的所有珊瑚礁的生物群,水和沉积物有关,但由于当前技术的局限性,纳米塑料(NP;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信