一氧化氮悖论:抗菌药物和抑制剂的抗生素疗效。

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Calum M Webster, Mark Shepherd
{"title":"一氧化氮悖论:抗菌药物和抑制剂的抗生素疗效。","authors":"Calum M Webster, Mark Shepherd","doi":"10.1042/ETLS20230114","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.</p>","PeriodicalId":46394,"journal":{"name":"Emerging Topics in Life Sciences","volume":" ","pages":"37-43"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903473/pdf/","citationCount":"0","resultStr":"{\"title\":\"The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy.\",\"authors\":\"Calum M Webster, Mark Shepherd\",\"doi\":\"10.1042/ETLS20230114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.</p>\",\"PeriodicalId\":46394,\"journal\":{\"name\":\"Emerging Topics in Life Sciences\",\"volume\":\" \",\"pages\":\"37-43\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Topics in Life Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1042/ETLS20230114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Topics in Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1042/ETLS20230114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,抗生素针对的是能量消耗过程,现在有大量研究支持这样的结论,即细菌的代谢状态可能对抗生素的功效产生深远的影响。一些文章暗示细菌能量学和呼吸抑制剂一氧化氮(NO)在这一过程中,尽管确定NO如何通过调节细菌能量代谢来降低一系列抗生素效力的确切机制已被证明是具有挑战性的。在此,我们介绍了NO在感染过程中的作用,考虑了NO与抗生素疗效之间的已知联系,并讨论了感染部位存在的NO通过控制细菌能量学介导这些作用的潜在机制。这篇前瞻性文章强调了一氧化氮和抗生素作用之间的重要关系,这在很大程度上被忽视了,并概述了未来开发针对细菌能量代谢的新药和疗法的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nitric oxide paradox: antimicrobial and inhibitor of antibiotic efficacy.

It is well-known that antibiotics target energy-consuming processes and a significant body of research now supports the conclusion that the metabolic state of bacteria can have a profound impact upon the efficacy of antibiotics. Several articles implicate bacterial energetics and the respiratory inhibitor nitric oxide (NO) in this process, although pinpointing the precise mechanism for how NO can diminish the potency of a range of antibiotics through modulating bacterial energy metabolism has proved challenging. Herein, we introduce the role of NO during infection, consider known links between NO and antibiotic efficacy, and discuss potential mechanisms via which NO present at the site of infection could mediate these effects through controlling bacterial energetics. This perspective article highlights an important relationship between NO and antibiotic action that has largely been overlooked and outlines future considerations for the development of new drugs and therapies that target bacterial energy metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信