IEEE Open Journal of Nanotechnology最新文献

筛选
英文 中文
Single DNA Translocation and Electrical Characterization Based on Atomic Force Microscopy and Nanoelectrodes 基于原子力显微镜和纳米电极的单DNA易位和电学表征
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-10-25 DOI: 10.1109/OJNANO.2022.3217108
Bo Ma;Jin-Woo Kim;Steve Tung
{"title":"Single DNA Translocation and Electrical Characterization Based on Atomic Force Microscopy and Nanoelectrodes","authors":"Bo Ma;Jin-Woo Kim;Steve Tung","doi":"10.1109/OJNANO.2022.3217108","DOIUrl":"10.1109/OJNANO.2022.3217108","url":null,"abstract":"Precision DNA translocation control is critical for achieving high accuracy in single molecule-based DNA sequencing. In this report, we describe an atomic force microscopy (AFM) based method to linearize a double-stranded DNA strand during the translocation process and characterize the electrical properties of the moving DNA using a platinum (Pt) nanoelectrode gap. In this method, λDNAs were first deposited on a charged mica substrate surface and topographically scanned. A single DNA suitable for translocation was then identified and electrostatically attached to an AFM probe by pressing the probe tip down onto one end of the DNA strand without chemical functionalizations. Next, the DNA strand was lifted off the mica surface by the probe tip. The pulling force required to completely lift off the DNA agreed well with the theoretical DNA adhesion force to a charged mica surface. After liftoff, the captured DNA was translocated at varied speeds across the substrate and ultimately across the Pt nanoelectrode gap for electrical characterizations. Finally, finite element analysis of the effect of the translocating DNA on the conductivity of the nanoelectrode gap was conducted, validating the range of the gap current measured experimentally during the DNA translocation process.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"124-130"},"PeriodicalIF":1.7,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Sensing Arrays Based on Organic Electrochemical Transistors 基于有机电化学晶体管的集成传感阵列
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-10-17 DOI: 10.1109/OJNANO.2022.3215135
Jinjie Wen;Jie Xu;Wei Huang;Cong Chen;Libing Bai;Yuhua Cheng
{"title":"Integrated Sensing Arrays Based on Organic Electrochemical Transistors","authors":"Jinjie Wen;Jie Xu;Wei Huang;Cong Chen;Libing Bai;Yuhua Cheng","doi":"10.1109/OJNANO.2022.3215135","DOIUrl":"10.1109/OJNANO.2022.3215135","url":null,"abstract":"Organic electrochemical transistors (OECTs), as one of the most promising sensing techniques, have shown various advantages compared to traditional means, which include ultra-high sensitivity, low driving voltage, and excellent biocompatibility for different bioelectrical and biochemical sensing. Moreover, to fully unleash the potential of OECT sensors, integrated sensing systems, especially OECT-based sensing arrays, are widely investigated due to spatiotemporal resolution, mechanical flexibility, high optical transparency, low power dissipation, and ease of fabrication. These advantages are attributed to the unique working mechanism of OECT, novel mixed ionic-electronic (semi)conductors, adaptable device geometry/structure, etc. In this review, advances in OECT-based sensing systems are systematically summarized, with a focus on the OECT-based sensing array. Furthermore, perspectives, concerning stability, cut-off frequency, integrating density, and power dissipation, are discussed based on recent studies on OECTs and their relevant sensor arrays. Last, a summary and an outlook of this field are provided.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"101-115"},"PeriodicalIF":1.7,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9921324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Plasma Synthesis of Silicon Nanoparticles: From Molecules to Clusters and Nanoparticle Growth 等离子体合成纳米硅:从分子到团簇和纳米颗粒生长
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-09-28 DOI: 10.1109/OJNANO.2022.3209995
Shota Nunomura;Kunihiro Kamataki;Takehiko Nagai;Tatsuya Misawa;Shinji Kawai;Kosuke Takenaka;Giichiro Uchida;Kazunori Koga
{"title":"Plasma Synthesis of Silicon Nanoparticles: From Molecules to Clusters and Nanoparticle Growth","authors":"Shota Nunomura;Kunihiro Kamataki;Takehiko Nagai;Tatsuya Misawa;Shinji Kawai;Kosuke Takenaka;Giichiro Uchida;Kazunori Koga","doi":"10.1109/OJNANO.2022.3209995","DOIUrl":"10.1109/OJNANO.2022.3209995","url":null,"abstract":"Plasma nanotechnology is widely used for nanoscale etching, dopant implantation and thin-film deposition for state-of-the-art semiconductor devices. Such a plasma nanotechnology has another interesting aspect of synthesizing nanoparticles, in a controlled manner of atomic composition, structure and those size. Here, we present the polymerization and growth of silicon nanoparticles from a molecular level to 10 nm-particles in hydrogen diluted silane plasmas. The polymerization and growth are experimentally studied using various plasma diagnostic tools. The results indicate that nanoparticles are rapidly formed via gas-phase reactions in a low-density plasma comprising high-energy electrons. The growth kinetics and the modification of plasma properties are discussed in terms of gas-phase reactions, charging and coagulation of nanoparticles.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"94-100"},"PeriodicalIF":1.7,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9904822","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hybrid Spintronics/CMOS Logic Circuits Using All-Optical-Enabled Magnetic Tunnel Junction 采用全光磁隧道结的混合自旋电子学/CMOS逻辑电路
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-07-06 DOI: 10.1109/OJNANO.2022.3188768
Surya Narain Dikshit;Arshid Nisar;Seema Dhull;Namita Bindal;Brajesh Kumar Kaushik
{"title":"Hybrid Spintronics/CMOS Logic Circuits Using All-Optical-Enabled Magnetic Tunnel Junction","authors":"Surya Narain Dikshit;Arshid Nisar;Seema Dhull;Namita Bindal;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3188768","DOIUrl":"10.1109/OJNANO.2022.3188768","url":null,"abstract":"Spintronics is one of the emerging fields for next-generation low power, high endurance, non-volatile, and area efficient memory technology. Spin torque transfer (STT), spin orbit torque (SOT), and electric field assisted switching mechanisms have been used to switch magnetization in various spintronic devices. However, their operation speed is fundamentally limited by the spin precession time that typically ranges in 10–400 ps. Such a time constraint severely limits the possible operation of these devices in high-speed systems. Optical switching using ultrashort laser pulses, on the other hand, is able to achieve sub-picosecond switching operation in magnetic tunnel junctions (MTJs). In this paper, all optically switched (AOS) MTJ has been used to design high speed and low power hybrid MTJ/CMOS based logic circuits such as AND/NAND, XOR/XNOR, and full adder. Owing to the ultra-fast switching operation of AOS-MTJ, the circuit level results show that the energy and speed of AOS-MTJ based logic circuits are improved by 85% and 97%, respectively, when compared to STT based circuits. In comparison to SOT based designs, the proposed logic circuits show 10% and 91% improvement in energy efficiency and speed, respectively.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"85-93"},"PeriodicalIF":1.7,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9815875","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Novel Radiation Hardened SOT-MRAM Read Circuit for Multi-Node Upset Tolerance 一种新型多节点抗扰辐射硬化SOT-MRAM读电路
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-06-08 DOI: 10.1109/OJNANO.2022.3181040
Alok Kumar Shukla;Seema Dhull;Arshid Nisar;Sandeep Soni;Namita Bindal;Brajesh Kumar Kaushik
{"title":"Novel Radiation Hardened SOT-MRAM Read Circuit for Multi-Node Upset Tolerance","authors":"Alok Kumar Shukla;Seema Dhull;Arshid Nisar;Sandeep Soni;Namita Bindal;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3181040","DOIUrl":"10.1109/OJNANO.2022.3181040","url":null,"abstract":"The rapid transistor scaling and threshold voltage reduction pose several challenges such as high leakage current and reliability issues. These challenges also make VLSI circuits more susceptible to soft-errors, particularly when subjected to harsh environmental conditions. Hybrid spintronic/CMOS technology has emerged as one of the promising techniques to achieve low leakage power and non-volatility. Moreover, the spintronic memories are inherently resistant to the radiation effects such as heavy-ion irradiation and total ionizing dose. However, its CMOS peripheral circuitry is more susceptible to radiation-induced single-event upset (SEU) and double-node upset (DNU). In this paper, a new radiation-hardened read circuit for SOT magnetic random access memory (MRAM) on 45nm technology has been presented. The proposed circuit is highly resistant to all the probable SEUs and DNUs when compared to the previously reported designs. The results show that it can tolerate 4.5X, 11X, 9X, and 10.5X more critical charge as compared to the cross-coupled CMOS transistor, 11T, 13T, and 11T radiation hardened circuits, respectively. Moreover, the recovery time of the proposed circuit is improved by 20% when compared to cross-coupled CMOS transistor circuits.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"78-84"},"PeriodicalIF":1.7,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9791114","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Area Efficient Computing-in-Memory Architecture Using STT/SOT Hybrid Three Level Cell 基于STT/SOT混合三级单元的区域高效内存计算体系结构
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-04-12 DOI: 10.1109/OJNANO.2022.3166959
Seema Dhull;Arshid Nisar;Rakesh Bhat;Brajesh Kumar Kaushik
{"title":"Area Efficient Computing-in-Memory Architecture Using STT/SOT Hybrid Three Level Cell","authors":"Seema Dhull;Arshid Nisar;Rakesh Bhat;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2022.3166959","DOIUrl":"10.1109/OJNANO.2022.3166959","url":null,"abstract":"Spintronic-based computing-in-memory (CiM) architecture has emerged as one of the efficient solutions to counter the latency/bandwidth bottleneck of conventional von-Neumann architecture. However, computation within a small area while achieving low power consumption still remains a challenge. Multi-bit spintronic storage device is a suitable solution to improve the integration density of such architectures. This paper focuses on using spin-transfer torque (STT)/spin-orbit torque (SOT) based hybrid three-level cell (TLC) in CiM application for implementing logic circuits such as AND, XOR, and magnetic full adder (MFA). Moreover, the performance of the STT/SOT-TLC-based MFA is compared with other full adder designs. The results show that the proposed MFA is 75% more area-efficient in comparison to two-bit STT and SOT-based designs, and 50% more area-efficient in comparison to differential spin hall effect (DSHE) based designs","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"45-51"},"PeriodicalIF":1.7,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9756330","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62887858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications 生物光子应用的嵌入式元件平面扇出封装
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-03-30 DOI: 10.1109/OJNANO.2022.3163386
Akeeb Hassan;Sepehr Soroushiani;Abdulhameed Abdal;Sk Yeahia Been Sayeed;Wei-Chiang Lin;Markondeya Raj Pulugurtha
{"title":"Embedded-Component Planar Fan-Out Packaging for Biophotonic Applications","authors":"Akeeb Hassan;Sepehr Soroushiani;Abdulhameed Abdal;Sk Yeahia Been Sayeed;Wei-Chiang Lin;Markondeya Raj Pulugurtha","doi":"10.1109/OJNANO.2022.3163386","DOIUrl":"10.1109/OJNANO.2022.3163386","url":null,"abstract":"Embedded-chip planar silver-elastomer interconnect technology is developed with flexible substrates and demonstrated for on-skin biophotonic sensor applications. This approach has several benefits and is also consistent with chip-thinning where the chip thickness is 100 microns and less. The key benefits from this approach arise because both the bottom and top sides are now available as flat surfaces for 3D integration of other components. It also results in the lowest electrical parasitics compared to flipchip with adhesives or printed-ramp interconnections with surface-assembled devices. Embedding of chips in flexible carriers was accomplished with direct screen-printed interconnects onto the chip pads in substrate cavities. Silver nanoflake-loaded polyurethane is utilized in the embedded-chip packages to provide the desired lower interconnect resistance and also reliability in flexible packages under deformed configurations. Viscoelastic models were utilized to model the interconnection stresses. Planar interconnects in flexible substrates are developed with conductive silver-loaded elastomer interconnects. This approach is compared to direct chip-on-flex assembly technology for reliability under bending and high-temperature storage. The embedded-chip technology is demonstrated through biophotonic sensor applications where light sources (LEDs) and photodetectors are embedded inside the package. Functional validation in bent configuration at low curvatures is shown by measuring pulse rate and muscle activity with human subjects. By extending this technology to nanowires in elastomers, further enhancement in electrical and reliability performance can be achieved.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"52-60"},"PeriodicalIF":1.7,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9745373","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Computing: Fundamentals, Implementations and Applications 量子计算:基础、实现和应用
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-03-27 DOI: 10.1109/OJNANO.2022.3178545
Hilal Ahmad Bhat;Farooq Ahmad Khanday;Brajesh Kumar Kaushik;Faisal Bashir;Khurshed Ahmad Shah
{"title":"Quantum Computing: Fundamentals, Implementations and Applications","authors":"Hilal Ahmad Bhat;Farooq Ahmad Khanday;Brajesh Kumar Kaushik;Faisal Bashir;Khurshed Ahmad Shah","doi":"10.1109/OJNANO.2022.3178545","DOIUrl":"10.1109/OJNANO.2022.3178545","url":null,"abstract":"Quantum Computing is a technology, which promises to overcome the drawbacks of conventional CMOS technology for high density and high performance applications. Its potential to revolutionize today's computing world is attracting more and more researchers towards this field. However, due to the involvement of quantum properties, many beginners find it difficult to follow the field. Therefore, in this research note an effort has been made to introduce the various aspects of quantum computing to researchers, quantum engineers and scientists. The historical background and basic concepts necessary to understand quantum computation and information processing have been introduced in a lucid manner. Various physical implementations and potential application areas of quantum computation have also been discussed in this paper. Recent developments in each realization, in the context of the DiVincenzo criteria, including ion traps based quantum computing, superconducting quantum computing, nuclear magnetic resonance (NMR) quantum computing, spintronics and semiconductor based quantum computing have been discussed.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"61-77"},"PeriodicalIF":1.7,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9783210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62888048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Low-Power Approximate RPR Scheme for Unsigned Integer Arithmetic Computation 无符号整数算术计算的低功耗近似RPR方案
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-02-23 DOI: 10.1109/OJNANO.2022.3153329
Ke Chen;Weiqiang Liu;Ahmed Louri;Fabrizio Lombardi
{"title":"Low-Power Approximate RPR Scheme for Unsigned Integer Arithmetic Computation","authors":"Ke Chen;Weiqiang Liu;Ahmed Louri;Fabrizio Lombardi","doi":"10.1109/OJNANO.2022.3153329","DOIUrl":"https://doi.org/10.1109/OJNANO.2022.3153329","url":null,"abstract":"A scheme often used for error tolerance of arithmetic circuits is the so-called Reduced Precision Redundancy (RPR). Rather than replicating multiple times the entire module, RPR uses reduced precision (inexact) copies to significantly reduce the redundancy overhead, while still being able to correct the largest errors. This paper focuses on the low-power operation for RPR; a new scheme is proposed. At circuit level, power gating is initially utilized in the arithmetic modules to power off one of the modules (i.e., the exact module) when the inexact modules’ error is smaller than the threshold. The proposed design is applicable to (unsigned integer) addition, multiplication, and MAC (multiply and add) by proposing RPR implementations that reduce the power consumption with a limited impact on its error correction capability. The proposed schemes have been implemented and tested for various applications (image and DCT processing). The results show that they can significantly reduce power consumption; moreover, the simulation results show that the Mean Square Error (MSE) at the proposed schemes’ output is low.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"36-44"},"PeriodicalIF":1.7,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782713/9680797/09720147.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3477918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
2022 Index IEEE Open Journal of Nanotechnology Vol. 3 IEEE纳米技术开放杂志第3卷
IF 1.7
IEEE Open Journal of Nanotechnology Pub Date : 2022-01-01 DOI: 10.1109/OJNANO.2023.3234525
{"title":"2022 Index IEEE Open Journal of Nanotechnology Vol. 3","authors":"","doi":"10.1109/OJNANO.2023.3234525","DOIUrl":"10.1109/OJNANO.2023.3234525","url":null,"abstract":"Presents the 2022 author/subject index for this issue of the publication.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"3 ","pages":"244-250"},"PeriodicalIF":1.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10007541","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62889352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信