Sebastiano De Stefano;Alfredo Spuri;Raffaele Barbella;Ofelia Durante;Adolfo Mazzotti;Andrea Sessa;Angelo Di Bernardo;Antonio Di Bartolomeo
{"title":"Multilayer MoS2 Schottky Barrier Field Effect Transistor","authors":"Sebastiano De Stefano;Alfredo Spuri;Raffaele Barbella;Ofelia Durante;Adolfo Mazzotti;Andrea Sessa;Angelo Di Bernardo;Antonio Di Bartolomeo","doi":"10.1109/OJNANO.2025.3553692","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3553692","url":null,"abstract":"The miniaturization of electronic components remains a critical focus in electronics, particularly in transistor design, with research exploring new solutions such as the use of two-dimensional materials in Schottky Barrier Field Effect Transistors (SB-FETs). Following the trend, this study presents two-dimensional MoS<sub>2</sub> SB-FETs, configured with back-gate and van der Pauw contacts, and analyses their electrical behaviour through output and transfer characteristics. The consequences that local inhomogeneities due to fabrication processes have on Schottky barriers height and electrical behaviour of the device are underlined. A hierarchy of the Schottky barrier heights at the contacts is established, and a band model is developed to elucidate the underlying conduction mechanisms. This model combines thermionic emission and tunnelling to explain the operation of the studied MoS<sub>2</sub> devices and can be broadly applied to other SB-FETs.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"51-57"},"PeriodicalIF":1.8,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143817787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VCMA Gradient-Driven Skyrmion on a Trapezoidal Nanotrack for Racetrack Memory Application","authors":"Bikash Sharma;Pema Rinzing Bhutia;Ravish Kumar Raj;Bibek Chettri;Brajesh Kumar Kaushik;Sonal Shreya","doi":"10.1109/OJNANO.2025.3550173","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3550173","url":null,"abstract":"Magnetic skyrmion has great potential as information carriers in next-generation logic, neuromorphic computing, and memory devices because of its topological stability, incredibly compact size, and low current consumption required to operate it. In this work, the computational demonstration of a skyrmion controlled by a voltage controlled magnetic anisotropy (VCMA) gradient on a trapezoidal nanotrack is studied for the application of racetrack memory. The trapezoidal nanotrack aids in guiding the skyrmion's motion under the anisotropy gradient by leveraging the edge repulsion force. By utilizing a defect, the proposed device ensures a continuous flow of binary bits ‘0’ and ‘1’ without any accumulation on the racetrack. The higher angle (<italic>θ<sub>high</sub></i>) and higher anisotropy gradient (<italic>ΔK<sub>u</sub><sub>-high</sub></i>) of the trapezoidal nanotrack accelerates the skyrmion owing to higher edge repulsion force and energy gradient force. The maximum speed of 1.27 m/s was achieved by the skyrmion, and the minimum time taken for the skyrmion to reach the detector from the nucleation point was 2.16 ns. The energy used to maintain the electric field is 4.58<italic>fJ</i> per bit operation. This presents a novel approach to manipulate skyrmions under anisotropy gradient (<italic>ΔK<sub>u</sub></i>) on the trapezoidal nanotrack, paving the way for the development of improved skyrmion racetrack memory (sk-RM).","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"44-50"},"PeriodicalIF":1.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143761352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a VDBA-Based Memristor Emulator and Its Application for Bio-Sensing Through Instrument Amplifier","authors":"Pulak Mondal;Subhasish Banerjee;Mourina Ghosh;Ankur Singh;Santosh Kumar","doi":"10.1109/OJNANO.2025.3544166","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3544166","url":null,"abstract":"This study describes a VDBA (Voltage Differencing Buffered Amplifier)-based memristor emulator and its use in an instrumentation amplifier for biomedical applications. The proposed grounded and floating memristor has been implemented using a single VDBA and grounded MOS-Capacitor. The VDBA used in this article has also been designed and uses eighteen transistors only. The proposed memristor emulator can be operated in both decremental and incremental modes. The suggested emulator's robustness has been verified using a variety of evaluations, including non-ideal inspection, variations of process corner, temperature swings, and non-volatility performance. Using 45 nm CMOS process parameters in the Cadence environment, the layout has been accomplished, and simulations and observations of the theoretical fingerprint characteristics have been made. The incremental and decremental mode of operation for grounded/floating memristor can be easily obtained by modifying the circuit slightly. The shape of the pinched-hysteresis loop is maintained up to 5 MHz. The functionality of the proposed memristor has also been tested by integrating it with the Instrumentation amplifier to amplify weak bio-medical signals.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"35-43"},"PeriodicalIF":1.8,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897813","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143563995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Index IEEE Open Journal of Nanotechnology Vol. 5","authors":"","doi":"10.1109/OJNANO.2025.3534518","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3534518","url":null,"abstract":"","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"1-8"},"PeriodicalIF":1.8,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Memristive Ferroelectric FET for 1T-1R Nonvolatile Memory With Non-Destructive Readout","authors":"Roopesh Singh;Shivam Verma","doi":"10.1109/OJNANO.2025.3531759","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3531759","url":null,"abstract":"Energy-efficient non-volatile memory that supports non-destructive read capabilities is in high demand for random-access memory applications. This article presents the proposal and demonstration of a 1T-1R non-volatile memory cell, which has distinct read and write paths that utilize a memristive variant of the ferroelectric field effect transistor (MFeFET) for data storage. Through a combination of experimentally calibrated models and TCAD-based mixed-mode simulations, the proposed MFeFET-based memory cell is demonstrated to achieve a non-destructive read operation and higher read current at low operating voltages. Furthermore, the memory cell demonstrates a 50% reduction in read latency compared to spin transfer torque (STT) magneto-resistive random-access memory (MRAM) technologies, positioning it as a highly efficient solution for next-generation non-volatile memory applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"27-34"},"PeriodicalIF":1.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Open Journal of Nanotechnology Information for Authors","authors":"","doi":"10.1109/OJNANO.2025.3525915","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3525915","url":null,"abstract":"","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"C3-C3"},"PeriodicalIF":1.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation-Aware Training for Efficient Neural Network Inference on MRAM Based CiM Architecture","authors":"Hemkant Nehete;Sandeep Soni;Tharun Kumar Reddy Bollu;Balasubramanian Raman;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2024.3524265","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3524265","url":null,"abstract":"Convolutional neural networks (CNNs), despite their broad applications, are constrained by high computational and memory requirements. Existing compression techniques often neglect approximation errors incurred during training. This work proposes approximation-aware-training, in which group of weights are approximated using a differential approximation function, resulting in a new weight matrix composed of approximation function's coefficients (AFC). The network is trained using backpropagation to minimize the loss function with respect to AFC matrix with linear and quadratic approximation functions preserving accuracy at high compression rates. This work extends to implement an compute-in-memory architecture for inference operations of approximate neural networks. This architecture includes a mapping algorithm that modulates inputs and map AFC to crossbar arrays directly, eliminating the need to predict approximated weights for evaluating output. This reduces the number of crossbars, lowering area and energy consumption. Integrating magnetic random-access memory-based devices further enhances performance by reducing latency and energy consumption. Simulation results on approximated LeNet-5, VGG8, AlexNet, and ResNet18 models trained on the CIFAR-100 dataset showed reductions of 54%, 30%, 67%, and 20% in the total number of crossbars, respectively, resulting in improved area efficiency. In the ResNet18 architecture, latency and energy consumption decreased by 95% and 93.3% with spin-orbit torque (SOT) based crossbars compared to RRAM-based architectures.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"16-26"},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10819260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave-Assisted Synthesis and Characterization of Iron Oxide Nanoparticles for Advanced Biomedical Sensing Applications","authors":"Vivek Pratap Singh;Chandra Prakash Singh;Santosh Kumar;Saurabh Kumar Pandey;Deepak Punetha","doi":"10.1109/OJNANO.2024.3514866","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3514866","url":null,"abstract":"This study focuses on the synthesis and characterization of Superparamagnetic Iron Oxide Nanoparticles (IONPs) with potential biomedical and sensing applications. These nanoparticles are in high demand for their biocompatibility, biodegradability, and superparamagnetic properties. In contrast to traditional high-temperature synthesis methods, microwave-assisted co-precipitation provides notable benefits, such as improved superparamagnetic characteristics, a high surface-to-volume ratio, large surface area, and simplified separation processes. The synthesis process utilized microwave-assisted co-precipitation, and a range of characterization techniques, including XRD, FESEM, VSM, FTIR, and UV-spectroscopy, were employed to assess the properties of the iron oxide nanoparticles. Analysis of the XRD, FTIR, and UV-spectroscopy results confirmed the formation of IONPs, predominantly comprising magnetite (Fe3O4). The microwave-synthesized IONPs exhibited superparamagnetic behavior, featuring an average crystallite size of 9 nm and robust saturation magnetization values (up to 68 emu/g). These attributes render them highly suitable for applications such as MRI contrast agents, thermal mediators in hyperthermia, drug delivery systems, and advanced sensor technologies, including magnetic sensing and biosensing applications, where their high magnetic responsiveness and surface functionalization capabilities can be effectively leveraged.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"10-15"},"PeriodicalIF":1.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10810447","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving Linearity and Symmetry of Synaptic Update Characteristics and Retentivity of Synaptic States of the Domain-Wall Device Through Addition of Edge Notches","authors":"Raman Hissariya;Debanjan Bhowmik","doi":"10.1109/OJNANO.2024.3514900","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3514900","url":null,"abstract":"Compute-in-memory (CIM) crossbar arrays of non-volatile memory (NVM) synapse devices have been considered very attractive for fast and energy-efficient implementation of various neural network (NN) algorithms. High retention time of the synaptic states and high linearity and symmetry of the synaptic weight update characteristics (long-term potentiation (LTP) and long-term depression (LTD)) are major requirements for the NVM synapses in order to obtain high classification accuracy upon implementation of the NN algorithms on the corresponding crossbar arrays. In this paper, with respect to the spin-orbit-torque-driven domain-wall synapse device, we show that addition of edge notches significantly helps in satisfying the aforementioned requirements. At finite temperatures, notches prevent the domain wall from moving due to stray dipole and thermal fields when SOT-causing current is not applied. This, in turn, improves linearity and asymmetry of the LTP and LTD characteristics of the device as well as the retention time of synaptic states. We have also studied how these synaptic properties depend on the spacing between the notches and the size of the notches in the device. We perform this analysis here through rigorous micromagnetic simulations carried out for room temperature (300K), with dipole and thermal fields taken into account.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"1-9"},"PeriodicalIF":1.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juo Lee;Sungmin Lee;Iksong Byun;Myung Chul Lee;Jungsil Kim;Hoon Seonwoo
{"title":"Pulsed Electromagnetic Field-Assisting Reduced Graphene Oxide-Incorporated Nanofibers for Osteogenic Differentiation of Human Dental Pulp Stem Cells","authors":"Juo Lee;Sungmin Lee;Iksong Byun;Myung Chul Lee;Jungsil Kim;Hoon Seonwoo","doi":"10.1109/OJNANO.2024.3494770","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494770","url":null,"abstract":"In bone tissue engineering, various approaches have been investigated to enhance osteogenic regeneration. Previous studies have predominantly employed scaffolds with aligned structures or reduced graphene oxide (RGO) to facilitate bone regeneration. However, current scaffold designs face limitations in combining structural guidance with effective electromagnetic stimulation. Additionally, delivering localized stimulation within scaffolds remains a challenge in maximizing the potential of these materials for bone regeneration. To address these limitations and strengthen previous approaches, this study presents a novel strategy in tissue engineering for enhanced osteogenic differentiation. RGO-incorporated nanofibers (RGO-NFs) were fabricated via electrospinning a 10% polycaprolactone (PCL) solution with RGO concentrations varying. The random fibers were deposited on a planar surface, while the aligned fibers were deposited on a rotating drum. The morphology and orientation of the fibers were confirmed through electron microscopy. X-ray diffraction spectrometry was employed to confirm the integration of RGO and PCL. All groups demonstrated optimal cell adhesion and viability. RGO-NFs exhibited higher osteogenesis-related protein expression than PCL-only scaffolds, further enhanced by pulsed electromagnetic field (PEMF) application. The application of PEMF stimulation within aligned RGO-NFs presents a potentially more efficient alternative to existing methods, offering a novel, non-invasive therapeutic strategy for bone defect regeneration.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"124-133"},"PeriodicalIF":1.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}