IEEE Open Journal of Nanotechnology最新文献

筛选
英文 中文
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules 用于无标签检测生物分子的高性能介电调制外延层隧道场效应晶体管
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-08 DOI: 10.1109/OJNANO.2024.3494714
Kunal Aggarwal;Avinash Lahgere
{"title":"High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules","authors":"Kunal Aggarwal;Avinash Lahgere","doi":"10.1109/OJNANO.2024.3494714","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494714","url":null,"abstract":"In this paper, using calibrated simulation we have reported a dielectric modulated epitaxial tunnel layer TFET (DM ETL-TFET) for the label-free detection of biomolecules. We have shown that due to vertical tunneling direction, the ETL-TFET exhibits \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00003 orders of improvement in the ON-state current in comparison to its counterpart conventional TFET. In addition, the proposed DM ETL-TFET biosensor shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00004 orders, and \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00001 order higher ON-state current sensitivity than the past reported core-shell junctionless NT-TFET, and DM NT-TFET biosensors, respectively. Moreover, in comparison to the lateral DM TFET, the proposed DM ETL-TFET shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000310 mV higher threshold voltage sensitivity. Also, the subthreshold swing sensitivity of the proposed biosensor is found to be \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00000.63 for the keratin biomolecule. Although the proposed biosensor shows almost the same selectivity, the proposed DM ETL-TFET biosensor does not need a complex fabrication process flow, hence, reducing the fabrication cost. Our findings that the proposed biosensor is a lucrative alternative to the FET-based biosensors.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"116-123"},"PeriodicalIF":1.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging 利用基于 FPGA 的合成孔径成像技术的便携式低成本手持超声系统
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-07 DOI: 10.1109/OJNANO.2024.3494544
Wenping Wang;Ziliang Feng
{"title":"Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging","authors":"Wenping Wang;Ziliang Feng","doi":"10.1109/OJNANO.2024.3494544","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494544","url":null,"abstract":"The handheld ultrasound has been widely applied in various clinical applications due to its high portability and cost-effectiveness advantages. The smaller hardware architecture can expand its range of application scenarios. However, miniaturized ultrasound devices face the challenges in terms of image quality, frame rate, and power consumption. The achievement of high-quality and high-frame-rate imaging depends on numerous channels and higher pulse repetition frequency (PRF) at the cost of power consumption. The proposed work aims to design a field-programmable gate array (FPGA)-based prototype with synthetic aperture method for portable and cost-effective handheld ultrasound system. The prototype supports 8 transmit and receive channels and forms up to 8 synthetic apertures. In addition, to optimize the FPGA resources, the auto delay calculation and segmented apodizations are employed for 4 parallel beamforming lines. To evaluate the performance of our proposed prototype, scan sequences of B-mode, C-mode, and D-mode are implemented for image construction. The results show that the proposed prototype can provide a lateral resolution of 0.30 mm, a contrast-to-noise ratio (CNR) of 7.58 dB, and a frame rate of 22 frames per second (FPS) in dual-mode imaging. Moreover, it is remarkable that the memory and logic resources in the FPGA (EP4CE55) account for 73.7% and 66.2%, respectively, which makes the FPGA's power consumption only about 530 mW. The proposed prototype is suitable for handheld and other miniaturized ultrasound imaging systems.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"107-115"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology 压电纳米材料中的极化和应变:推进生物医学技术中的传感应用
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-10-30 DOI: 10.1109/OJNANO.2024.3488787
Anmol Garg;Sajal Agarwal;Deepak Punetha
{"title":"Polarization and Strain in Piezoelectric Nanomaterials: Advancing Sensing Applications in Biomedical Technology","authors":"Anmol Garg;Sajal Agarwal;Deepak Punetha","doi":"10.1109/OJNANO.2024.3488787","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3488787","url":null,"abstract":"This paper reports the comparative analysis of different piezoelectric materials through a MEMS-based piezoelectric actuator model, emphasizing their potential for sensing applications. The polarization and electrostrictive strain tensor capabilities have been extensively studied for different piezoelectric materials such as PZT, LiNbO\u0000<sub>3</sub>\u0000, PVDF, etc. The simulation results obtained at varying voltages and mechanical stress demonstrate that LiNbO\u0000<sub>3</sub>\u0000 exhibits superior performance among the tested materials, with a polarization value of 0.5163 C/m\u0000<sup>2</sup>\u0000 at 800 volts and an electrostrictive strain tensor of 0.01 at an applied mechanical stress of 25 MPa. These findings will assist scientists in selecting the most suitable piezoelectric materials for sensing applications in biomedical fields.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"89-97"},"PeriodicalIF":1.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10739969","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients 在 DMI 梯度影响下操纵二维和三维磁孤子
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-10-21 DOI: 10.1109/OJNANO.2024.3484568
Rayan Moukhader;Davi Rodrigues;Eleonora Raimondo;Vito Puliafito;Bruno Azzerboni;Mario Carpentieri;Abbass Hamadeh;Giovanni Finocchio;Riccardo Tomasello
{"title":"Manipulation of 2D and 3D Magnetic Solitons Under the Influence of DMI Gradients","authors":"Rayan Moukhader;Davi Rodrigues;Eleonora Raimondo;Vito Puliafito;Bruno Azzerboni;Mario Carpentieri;Abbass Hamadeh;Giovanni Finocchio;Riccardo Tomasello","doi":"10.1109/OJNANO.2024.3484568","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3484568","url":null,"abstract":"Magnetic solitons hold great promise for token-based computing applications due to their intrinsic properties, including small size, topological stability, ultra-low power manipulation, and potentially ultra-fast operation. In particular, they have been proposed as reliable memory units that enable the execution of various logic tasks with in-situ memory. A critical challenge remains the identification of optimal soliton and efficient manipulation techniques. Previous research has primarily focused on the manipulation of two-dimensional solitons, such as skyrmions, domain walls, and vortices, by applied currents. The discovery of novel methods to control magnetic parameters, such as the interfacial Dzyaloshinskii-Moriya interaction, through strain, temperature gradients, and applied voltages offers new avenues for energetically efficient manipulation of magnetic structures. In this work, we present a comprehensive study using numerical and analytical methods to investigate the stability and motion of various magnetic textures under the influence of DMI gradients. Our results show that Néel and Bloch-type skyrmions, as well as radial vortices, exhibit motion characterized by finite skyrmion Hall angles, while circular vortices undergo expulsion dynamics. This study provides a deeper and crucial understanding of the stability and gradient-driven dynamics of magnetic solitons, paving the way for the design of scalable spintronics token-based computing devices.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"68-79"},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration 用于检测亮蓝食品掺假的硫化镓固定化光纤 SPR 传感器
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-10-21 DOI: 10.1109/OJNANO.2024.3484408
Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Yesudasu Vasimalla;Chella Santhosh;Ramachandran Balaji;S. R. Srither;Santosh Kumar
{"title":"Gallium Sulfide-Immobilized Optical Fiber-Based SPR Sensor for Detection of Brilliant Blue Food Adulteration","authors":"Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Yesudasu Vasimalla;Chella Santhosh;Ramachandran Balaji;S. R. Srither;Santosh Kumar","doi":"10.1109/OJNANO.2024.3484408","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3484408","url":null,"abstract":"Food safety assurance is crucial, particularly in identifying prohibited colors like brilliant blue (BB) that may pose significant health risks when used in food products. Surface plasmon resonance (SPR) biosensors provide a reliable, label-free method for highly sensitive detection of food adulterants. In this study, we present a novel gallium sulfide (GaS)-immobilized optical fiber SPR sensor designed for the rapid, real-time detection of BB synthetic dye. The proposed sensor is comprised of a high birefringence layer (HBL) core with non-added formaldehyde (NaF) cladding, silver (Ag) as the plasmonic metal, and GaS for enhanced detection sensitivity. To determine the sensor performance, the wavelength-dependent response was measured at different refractive indices (RIs), together with sensitivity and figure of merit (FOM) over the wavelength range of 400 nm to 1000 nm. The parameters were evaluated in a sensing medium consisting of water and BB under concentrations ranging from 10 mM to 600 mM. Moreover, the distribution of electromagnetic fields across the multilayer structures of the sensor, particularly at the interfaces between Ag-GaS and GaS-analytes, was investigated. At a 10 mM concentration, the optimized Ag-GaS-based sensor, consisting of 70 nm Ag and 3 nm GaS layers at an incidence angle of 85°, achieves a maximum sensitivity of 5119.6 nm/RIU and FOM of 255.98 RIU\u0000<sup>-1</sup>\u0000. The obtained results illustrate the sensor has the potential to detect non-approved colors like BB in food items with great sensitivity and accuracy.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"98-106"},"PeriodicalIF":1.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726679","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismuth-Immobilized Optical Fiber-Based SPR Nanosensor for Detection of Zinc Nitrate Contamination in Aquaculture Industry 基于铋固定化光纤的 SPR 纳米传感器用于检测水产养殖业中的硝酸锌污染
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-10-14 DOI: 10.1109/OJNANO.2024.3479869
Yesudasu Vasimalla;Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Chella Santhosh;Ramachandran Balaji;S.R. Srither;Santosh Kumar
{"title":"Bismuth-Immobilized Optical Fiber-Based SPR Nanosensor for Detection of Zinc Nitrate Contamination in Aquaculture Industry","authors":"Yesudasu Vasimalla;Nasih Hma Salah;Baljinder Kaur;Hogr M. Rasul;Chella Santhosh;Ramachandran Balaji;S.R. Srither;Santosh Kumar","doi":"10.1109/OJNANO.2024.3479869","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3479869","url":null,"abstract":"Zinc nitrate, a toxic substance usually found in industrial waste and agricultural residues, poses a serious threat to the aquaculture industry due to the poor water quality and harmful aquatic life. Effective monitoring of zinc nitrate contamination is essential to protect aquatic ecosystems and also ensures the safety of aquaculture products. This study presents a bismuth-immobilized optical fiber-based surface plasmon resonance (SPR) biosensor for the rapid detection of zinc nitrate contamination. The sensor design incorporates a ZBLAN core, NaF cladding, silver (Ag) as a plasmonic metal, and bismuth (Bi) to enhance detection sensitivity. In our work, we compared the sensor performance of the proposed bismuth-immobilized SPR biosensor with the conventional Ag-based sensor design. The performance of the proposed Ag-Bi sensor model is compared with the conventional Ag-based sensor. To improve the sensitivity and FOM, Ag layer thickness is varied between 50 and 80 nm with respect to the zinc nitrate concentrations of 0%, 1%, and 5%. Using the angular interrogation method, the resonance wavelength shifts are correlated to changes in refractive index (RI). The Bi-immobilized Ag layer achieved a maximum sensitivity of 5680 nm/RIU at 5% zinc nitrate concentration and an FOM of 95.2381 RIU\u0000<sup>−1</sup>\u0000 at 1%. While conventional Ag-based sensors attained a maximum sensitivity of 5240 nm/RIU and an FOM of 90.345 RIU\u0000<sup>−1</sup>\u0000 at 80 nm Ag thickness. The above results demonstrate that the Ag-Bi layer SPR biosensor is highly suitable for simultaneously detecting zinc nitrate and other heavy metal contaminants in water, providing a cost-effective solution for heavy metal contamination detection in aquatic industry.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"80-88"},"PeriodicalIF":1.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715639","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-Principles Simulation of the Interaction Between DNA Nucleotides and One-Dimensional Carbon Chain in Electrical Based Sequencing 电测序中 DNA 核苷酸与一维碳链相互作用的第一原理模拟
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-09-03 DOI: 10.1109/OJNANO.2024.3451954
Zeina Salman;Jin-Woo Kim;Steve Tung
{"title":"First-Principles Simulation of the Interaction Between DNA Nucleotides and One-Dimensional Carbon Chain in Electrical Based Sequencing","authors":"Zeina Salman;Jin-Woo Kim;Steve Tung","doi":"10.1109/OJNANO.2024.3451954","DOIUrl":"10.1109/OJNANO.2024.3451954","url":null,"abstract":"Electrical DNA sequencing has attracted significant attention in recent years due to its simplified sequencing protocol, compact sequencing system, and relatively low sequencing cost. In the design and fabrication of the sequencing device, carbon-based nanomaterials such as graphene have been explored as a promising sensing material that provides an excellent combination of spatial resolution and base specificity. Using first-principles simulation, we determined the effect on the electrical conductivity of a one-dimensional carbon chain due to the presence of four DNA bases. The simulation results indicate that the interaction between the carbon chain and different DNA bases leads to different levels of conductivity change in the carbon chain. Quantitatively, base A is the most difficult base to detect due to its relatively small current change. Furthermore, the results also show that the relative orientation of the bases with respect to the carbon chain can affect the induced current change in the chain. This information can be used to optimize the structural design of future sequencing devices. Collectively, the first-principles simulation results suggest the integration of a one-dimensional carbon chain with supporting nanofluidic designs can provide a viable approach towards the development of a compact, robust, and high-resolution DNA sequencing system.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"39-46"},"PeriodicalIF":1.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Optical and Infrared Activity of Nanosphere Dimers Attributed to Dimer Geometry 二聚体几何形状增强了纳米球二聚体的光学和红外活性
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-08-05 DOI: 10.1109/OJNANO.2024.3437164
D. Keith Roper;Jin-Woo Kim;Ricardo R. Romo;Joseph Batta-Mpouma
{"title":"Enhanced Optical and Infrared Activity of Nanosphere Dimers Attributed to Dimer Geometry","authors":"D. Keith Roper;Jin-Woo Kim;Ricardo R. Romo;Joseph Batta-Mpouma","doi":"10.1109/OJNANO.2024.3437164","DOIUrl":"10.1109/OJNANO.2024.3437164","url":null,"abstract":"Enhanced optical and infrared activity of subwavelength metal nanoparticles is key to their use in optoelectronics, spectroscopy, and sensing. The present work compared spectra of nanosphere dimers merged by centrifuging gold nanospheres with corresponding simulated nanoscale dimers. Geometric features of the nanosphere dimers were related to corresponding optical and near-infrared activity through simulation. Differences in optical and infrared activity of the nanosphere dimers were largely attributable to changes in the radius of the nanosphere and the radius of the conductive junction between merged nanospheres. The features observed in the experimental spectra were attributed to a select number of dimers exhibiting predominantly optical and infrared activity, consistent with observations made in the corresponding transmission electron microscope image. The preparation and simulation methods in the present work appear useful to guide design, fabrication, and implementation of sustainably-synthesized nanosphere dimers with desired optical features for optoelectronic, spectroscopic, and sensing applications.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"47-56"},"PeriodicalIF":1.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing 完全 3D 打印的微型电化学平台,配有即插即用的石墨化电极:多巴胺传感的全面验证
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-06-25 DOI: 10.1109/OJNANO.2024.3418840
K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel
{"title":"Fully 3D Printed Miniaturized Electrochemical Platform With Plug-and-Play Graphitized Electrodes: Exhaustively Validated for Dopamine Sensing","authors":"K S Jaya Lakshmi;Ramya K;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/OJNANO.2024.3418840","DOIUrl":"10.1109/OJNANO.2024.3418840","url":null,"abstract":"Globally, a contemporary trend is towards the realization of sustainable, eco-friendly, miniaturized, and cost-effective sensors. This work focuses on developing a plug-and-play device using inexpensive and biodegradable UV resin fed 3D printing stereolithography (SLA) to produce miniaturized microfluidic platforms for electrochemical sensing. The device consists of three compartments designed to accommodate the 3-electrodes according to the need. SLA 3D printing technique solves these restrictions, making sensors reliable, repeatable, and durable. For electrochemical detection at the point of need or as a lab-on-chip (LoC) platform with minimal sample volume, this work attempts to construct a flexible as well as non-flexible microelectrode setup. The analytical capability of the platform is examined by quantifying nanomolar levels of dopamine in human body fluids. Chronoamperometry and cyclic voltammetry on surface-treated graphene-poly lactic acid (g-PLA) microelectrodes modified with gold nanoparticles are carried out utilizing a handheld potentiostat. The designed device has a linear range of 0.1 to 120 nM with limit of detection and limit of quantification of 0.083 and 0.27 nM, respectively. Various electrode characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy are carried out. The developed device is finally tested for real-time analysis on human blood and serum samples.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"30-38"},"PeriodicalIF":1.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-Random Number Generators for Stochastic Computing (SC): Design and Analysis 用于随机计算 (SC) 的伪随机数发生器:设计与分析
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-06-14 DOI: 10.1109/OJNANO.2024.3414955
Pilin Junsangsri;Fabrizio Lombardi
{"title":"Pseudo-Random Number Generators for Stochastic Computing (SC): Design and Analysis","authors":"Pilin Junsangsri;Fabrizio Lombardi","doi":"10.1109/OJNANO.2024.3414955","DOIUrl":"10.1109/OJNANO.2024.3414955","url":null,"abstract":"In most nanoscale stochastic computing designs, the Stochastic Number Generator (SNG) circuit is complex and occupies a significant area because each copy of a stochastic variable requires its own dedicated (and independent) stochastic number generator. This article introduces a novel approach for pseudo-random number generators (RNGs) to be used in SNGs. The proposed RNG design leverages the inherent randomness between each bit of data to generate larger sets of random numbers by concatenating the modules of the customized linear feedback shift registers. To efficiently generate random data, a plane of RNGs (comprising of multiple modules) is introduced. A sliding window approach is employed for reading data in both the horizontal and vertical directions; therefore, the sets of random numbers are generated by doubling the datasets and inverting the duplicated datasets. Flip-Flops are utilized to isolate the datasets and diminish correlation among them. This paper explores variations in parameters to evaluate their impact on the performance of the proposed design. A comparative analysis between the proposed design and existing SNG designs from technical literature is presented. The results show that the proposed nanoscale RNG design offers many advantages such as small area per RNG, low power operation, generated large datasets and higher accuracy.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"57-67"},"PeriodicalIF":1.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10557718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信