IEEE Open Journal of Nanotechnology最新文献

筛选
英文 中文
IEEE Open Journal of Nanotechnology Information for Authors IEEE纳米技术信息开放杂志作者
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2025-01-06 DOI: 10.1109/OJNANO.2025.3525915
{"title":"IEEE Open Journal of Nanotechnology Information for Authors","authors":"","doi":"10.1109/OJNANO.2025.3525915","DOIUrl":"https://doi.org/10.1109/OJNANO.2025.3525915","url":null,"abstract":"","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"C3-C3"},"PeriodicalIF":1.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829840","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation-Aware Training for Efficient Neural Network Inference on MRAM Based CiM Architecture 基于MRAM的CiM结构中高效神经网络推理的逼近感知训练
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-12-31 DOI: 10.1109/OJNANO.2024.3524265
Hemkant Nehete;Sandeep Soni;Tharun Kumar Reddy Bollu;Balasubramanian Raman;Brajesh Kumar Kaushik
{"title":"Approximation-Aware Training for Efficient Neural Network Inference on MRAM Based CiM Architecture","authors":"Hemkant Nehete;Sandeep Soni;Tharun Kumar Reddy Bollu;Balasubramanian Raman;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2024.3524265","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3524265","url":null,"abstract":"Convolutional neural networks (CNNs), despite their broad applications, are constrained by high computational and memory requirements. Existing compression techniques often neglect approximation errors incurred during training. This work proposes approximation-aware-training, in which group of weights are approximated using a differential approximation function, resulting in a new weight matrix composed of approximation function's coefficients (AFC). The network is trained using backpropagation to minimize the loss function with respect to AFC matrix with linear and quadratic approximation functions preserving accuracy at high compression rates. This work extends to implement an compute-in-memory architecture for inference operations of approximate neural networks. This architecture includes a mapping algorithm that modulates inputs and map AFC to crossbar arrays directly, eliminating the need to predict approximated weights for evaluating output. This reduces the number of crossbars, lowering area and energy consumption. Integrating magnetic random-access memory-based devices further enhances performance by reducing latency and energy consumption. Simulation results on approximated LeNet-5, VGG8, AlexNet, and ResNet18 models trained on the CIFAR-100 dataset showed reductions of 54%, 30%, 67%, and 20% in the total number of crossbars, respectively, resulting in improved area efficiency. In the ResNet18 architecture, latency and energy consumption decreased by 95% and 93.3% with spin-orbit torque (SOT) based crossbars compared to RRAM-based architectures.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"16-26"},"PeriodicalIF":1.8,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10819260","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-Assisted Synthesis and Characterization of Iron Oxide Nanoparticles for Advanced Biomedical Sensing Applications 用于先进生物医学传感应用的氧化铁纳米颗粒的微波辅助合成和表征
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-12-20 DOI: 10.1109/OJNANO.2024.3514866
Vivek Pratap Singh;Chandra Prakash Singh;Santosh Kumar;Saurabh Kumar Pandey;Deepak Punetha
{"title":"Microwave-Assisted Synthesis and Characterization of Iron Oxide Nanoparticles for Advanced Biomedical Sensing Applications","authors":"Vivek Pratap Singh;Chandra Prakash Singh;Santosh Kumar;Saurabh Kumar Pandey;Deepak Punetha","doi":"10.1109/OJNANO.2024.3514866","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3514866","url":null,"abstract":"This study focuses on the synthesis and characterization of Superparamagnetic Iron Oxide Nanoparticles (IONPs) with potential biomedical and sensing applications. These nanoparticles are in high demand for their biocompatibility, biodegradability, and superparamagnetic properties. In contrast to traditional high-temperature synthesis methods, microwave-assisted co-precipitation provides notable benefits, such as improved superparamagnetic characteristics, a high surface-to-volume ratio, large surface area, and simplified separation processes. The synthesis process utilized microwave-assisted co-precipitation, and a range of characterization techniques, including XRD, FESEM, VSM, FTIR, and UV-spectroscopy, were employed to assess the properties of the iron oxide nanoparticles. Analysis of the XRD, FTIR, and UV-spectroscopy results confirmed the formation of IONPs, predominantly comprising magnetite (Fe3O4). The microwave-synthesized IONPs exhibited superparamagnetic behavior, featuring an average crystallite size of 9 nm and robust saturation magnetization values (up to 68 emu/g). These attributes render them highly suitable for applications such as MRI contrast agents, thermal mediators in hyperthermia, drug delivery systems, and advanced sensor technologies, including magnetic sensing and biosensing applications, where their high magnetic responsiveness and surface functionalization capabilities can be effectively leveraged.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"10-15"},"PeriodicalIF":1.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10810447","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Linearity and Symmetry of Synaptic Update Characteristics and Retentivity of Synaptic States of the Domain-Wall Device Through Addition of Edge Notches 通过增加边缘缺口改善域壁器件突触更新特性的线性和对称性以及突触状态的保持性
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-12-09 DOI: 10.1109/OJNANO.2024.3514900
Raman Hissariya;Debanjan Bhowmik
{"title":"Improving Linearity and Symmetry of Synaptic Update Characteristics and Retentivity of Synaptic States of the Domain-Wall Device Through Addition of Edge Notches","authors":"Raman Hissariya;Debanjan Bhowmik","doi":"10.1109/OJNANO.2024.3514900","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3514900","url":null,"abstract":"Compute-in-memory (CIM) crossbar arrays of non-volatile memory (NVM) synapse devices have been considered very attractive for fast and energy-efficient implementation of various neural network (NN) algorithms. High retention time of the synaptic states and high linearity and symmetry of the synaptic weight update characteristics (long-term potentiation (LTP) and long-term depression (LTD)) are major requirements for the NVM synapses in order to obtain high classification accuracy upon implementation of the NN algorithms on the corresponding crossbar arrays. In this paper, with respect to the spin-orbit-torque-driven domain-wall synapse device, we show that addition of edge notches significantly helps in satisfying the aforementioned requirements. At finite temperatures, notches prevent the domain wall from moving due to stray dipole and thermal fields when SOT-causing current is not applied. This, in turn, improves linearity and asymmetry of the LTP and LTD characteristics of the device as well as the retention time of synaptic states. We have also studied how these synaptic properties depend on the spacing between the notches and the size of the notches in the device. We perform this analysis here through rigorous micromagnetic simulations carried out for room temperature (300K), with dipole and thermal fields taken into account.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"6 ","pages":"1-9"},"PeriodicalIF":1.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10787236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed Electromagnetic Field-Assisting Reduced Graphene Oxide-Incorporated Nanofibers for Osteogenic Differentiation of Human Dental Pulp Stem Cells 用于人牙髓干细胞成骨分化的脉冲电磁场辅助还原石墨烯氧化物纳米纤维
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-27 DOI: 10.1109/OJNANO.2024.3494770
Juo Lee;Sungmin Lee;Iksong Byun;Myung Chul Lee;Jungsil Kim;Hoon Seonwoo
{"title":"Pulsed Electromagnetic Field-Assisting Reduced Graphene Oxide-Incorporated Nanofibers for Osteogenic Differentiation of Human Dental Pulp Stem Cells","authors":"Juo Lee;Sungmin Lee;Iksong Byun;Myung Chul Lee;Jungsil Kim;Hoon Seonwoo","doi":"10.1109/OJNANO.2024.3494770","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494770","url":null,"abstract":"In bone tissue engineering, various approaches have been investigated to enhance osteogenic regeneration. Previous studies have predominantly employed scaffolds with aligned structures or reduced graphene oxide (RGO) to facilitate bone regeneration. However, current scaffold designs face limitations in combining structural guidance with effective electromagnetic stimulation. Additionally, delivering localized stimulation within scaffolds remains a challenge in maximizing the potential of these materials for bone regeneration. To address these limitations and strengthen previous approaches, this study presents a novel strategy in tissue engineering for enhanced osteogenic differentiation. RGO-incorporated nanofibers (RGO-NFs) were fabricated via electrospinning a 10% polycaprolactone (PCL) solution with RGO concentrations varying. The random fibers were deposited on a planar surface, while the aligned fibers were deposited on a rotating drum. The morphology and orientation of the fibers were confirmed through electron microscopy. X-ray diffraction spectrometry was employed to confirm the integration of RGO and PCL. All groups demonstrated optimal cell adhesion and viability. RGO-NFs exhibited higher osteogenesis-related protein expression than PCL-only scaffolds, further enhanced by pulsed electromagnetic field (PEMF) application. The application of PEMF stimulation within aligned RGO-NFs presents a potentially more efficient alternative to existing methods, offering a novel, non-invasive therapeutic strategy for bone defect regeneration.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"124-133"},"PeriodicalIF":1.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing MRAMs With Low Resistance and Limited Dynamic Range for Efficient MAC Accelerator 利用低阻有限动态范围mram实现高效MAC加速器
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-18 DOI: 10.1109/OJNANO.2024.3501293
Sateesh;Kaustubh Chakarwar;Shubham Sahay
{"title":"Utilizing MRAMs With Low Resistance and Limited Dynamic Range for Efficient MAC Accelerator","authors":"Sateesh;Kaustubh Chakarwar;Shubham Sahay","doi":"10.1109/OJNANO.2024.3501293","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3501293","url":null,"abstract":"The recent advancements in data mining, machine learning algorithms and cognitive systems have necessitated the development of neuromorphic processing engines which may enable resource and computationally intensive applications on the internet-of-Things (IoT) edge devices with unprecedented energy efficiency. Spintronics based magnetic memory devices can emulate synaptic behavior efficiently and are hailed as one of the most promising candidates for realizing compact and ultra-energy efficient neural network accelerators. Although ultra-dense magnetic memories with multi-bit capability (MLC) were proposed recently, their application in hybrid CMOS-non-volatile memory accelerators is limited due to their low dynamic range (memory window) and high cell currents (ON/OFF-state resistance in ∼kΩ). In this work, we propose a novel supercell to enable the use of MLC MRAMs for neuromorphic multiply-accumulate (MAC) accelerators. For proof-of-concept demonstration, we exploit an MLC MRAM based on c-MTJ for realizing a highly scalable 2-FinFET-1-MRAM supercell with large dynamic range, low supercell currents and high endurance. Furthermore, we perform a comprehensive design exploration of a time-domain MAC accelerator utilizing the proposed supercell. Our detailed analysis using the ASAP7 PDK from ARM for FinFETs and an experimentally calibrated compact model for c-MTJ-based MRAM indicates the possibility of realizing a significantly high energy-efficiency of 87.4 TOPS/W and a throughput of 2.5 TOPS for a 200×200 MAC operation with 4-bit precision.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"141-148"},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidal Spin Ice Cellular Automata for Logic Design 用于逻辑设计的胶体自旋冰元胞自动机
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-18 DOI: 10.1109/OJNANO.2024.3499974
Vasileios P. Karkanis;Nikolaos I. Dourvas;Andrew Adamatzky;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis
{"title":"Colloidal Spin Ice Cellular Automata for Logic Design","authors":"Vasileios P. Karkanis;Nikolaos I. Dourvas;Andrew Adamatzky;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis","doi":"10.1109/OJNANO.2024.3499974","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3499974","url":null,"abstract":"An engineered system that exhibits a variety of interesting properties, such as collective dynamics that are not inherited in their building blocks, is the artificial spin ice (ASI) meta-materials. The building block of such a system is a dipolar nanomagnet with sub-micrometer dimensions. These nanomagnets are arranged in specific designs usually in square or kagome shape and are coupled together by their magnetic interactions. With external magnetic fields, it is possible to create magnetic moments or monopoles that cause a frustration to the system. Because of the local interactions, those moments travel through the topology. The observation of such structures is a very challenging procedure, because of the extremely fast flipping process of the spins. This is why the researchers use mesoscopic systems with materials such as colloids or spheres of nanomagnets which are placed inside of islands in periodic lattices that generate frustration by design. The interactions between those nanomagnets are based on Coulomb forces and are usually modeled by Brownian equations. In this paper, we propose a simple yet effective Cellular Automata (CA) model that can describe effectively the dynamics between nanomagnets in a square lattice structure. The manipulation of the initial positions of nanomagnets via an external magnetic field and the movement of magnetic moments from one site to another are capable to create Boolean logic. Using the CA model we propose the design of logic gates, computing structures such as half adders and rewritable memory elements.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"163-172"},"PeriodicalIF":1.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules 用于无标签检测生物分子的高性能介电调制外延层隧道场效应晶体管
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-08 DOI: 10.1109/OJNANO.2024.3494714
Kunal Aggarwal;Avinash Lahgere
{"title":"High-Performance Dielectric Modulated Epitaxial Tunnel Layer Tunnel FET for Label-Free Detection of Biomolecules","authors":"Kunal Aggarwal;Avinash Lahgere","doi":"10.1109/OJNANO.2024.3494714","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494714","url":null,"abstract":"In this paper, using calibrated simulation we have reported a dielectric modulated epitaxial tunnel layer TFET (DM ETL-TFET) for the label-free detection of biomolecules. We have shown that due to vertical tunneling direction, the ETL-TFET exhibits \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00003 orders of improvement in the ON-state current in comparison to its counterpart conventional TFET. In addition, the proposed DM ETL-TFET biosensor shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00004 orders, and \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00001 order higher ON-state current sensitivity than the past reported core-shell junctionless NT-TFET, and DM NT-TFET biosensors, respectively. Moreover, in comparison to the lateral DM TFET, the proposed DM ETL-TFET shows \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u0000310 mV higher threshold voltage sensitivity. Also, the subthreshold swing sensitivity of the proposed biosensor is found to be \u0000<inline-formula><tex-math>$sim$</tex-math></inline-formula>\u00000.63 for the keratin biomolecule. Although the proposed biosensor shows almost the same selectivity, the proposed DM ETL-TFET biosensor does not need a complex fabrication process flow, hence, reducing the fabrication cost. Our findings that the proposed biosensor is a lucrative alternative to the FET-based biosensors.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"116-123"},"PeriodicalIF":1.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747756","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition 基于模式识别的多任务学习磁参数估计
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-08 DOI: 10.1109/OJNANO.2024.3494836
Anubha Sehgal;Shipra Saini;Hemkant Nehete;Kunal Kranti Das;Sourajeet Roy;Brajesh Kumar Kaushik
{"title":"Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition","authors":"Anubha Sehgal;Shipra Saini;Hemkant Nehete;Kunal Kranti Das;Sourajeet Roy;Brajesh Kumar Kaushik","doi":"10.1109/OJNANO.2024.3494836","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494836","url":null,"abstract":"Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (A\u0000<sub>ex</sub>\u0000). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and A\u0000<sub>ex</sub>\u0000 with R\u0000<sup>2</sup>\u0000 scores of 0.991 and 0.998 respectively. The SVR model achieves R\u0000<sup>2</sup>\u0000 scores of 0.927 and 0.989 for DMI constant and A\u0000<sub>ex</sub>\u0000 respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"149-155"},"PeriodicalIF":1.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748362","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging 利用基于 FPGA 的合成孔径成像技术的便携式低成本手持超声系统
IF 1.8
IEEE Open Journal of Nanotechnology Pub Date : 2024-11-07 DOI: 10.1109/OJNANO.2024.3494544
Wenping Wang;Ziliang Feng
{"title":"Portable and Cost-Effective Handheld Ultrasound System Utilizing FPGA-Based Synthetic Aperture Imaging","authors":"Wenping Wang;Ziliang Feng","doi":"10.1109/OJNANO.2024.3494544","DOIUrl":"https://doi.org/10.1109/OJNANO.2024.3494544","url":null,"abstract":"The handheld ultrasound has been widely applied in various clinical applications due to its high portability and cost-effectiveness advantages. The smaller hardware architecture can expand its range of application scenarios. However, miniaturized ultrasound devices face the challenges in terms of image quality, frame rate, and power consumption. The achievement of high-quality and high-frame-rate imaging depends on numerous channels and higher pulse repetition frequency (PRF) at the cost of power consumption. The proposed work aims to design a field-programmable gate array (FPGA)-based prototype with synthetic aperture method for portable and cost-effective handheld ultrasound system. The prototype supports 8 transmit and receive channels and forms up to 8 synthetic apertures. In addition, to optimize the FPGA resources, the auto delay calculation and segmented apodizations are employed for 4 parallel beamforming lines. To evaluate the performance of our proposed prototype, scan sequences of B-mode, C-mode, and D-mode are implemented for image construction. The results show that the proposed prototype can provide a lateral resolution of 0.30 mm, a contrast-to-noise ratio (CNR) of 7.58 dB, and a frame rate of 22 frames per second (FPS) in dual-mode imaging. Moreover, it is remarkable that the memory and logic resources in the FPGA (EP4CE55) account for 73.7% and 66.2%, respectively, which makes the FPGA's power consumption only about 530 mW. The proposed prototype is suitable for handheld and other miniaturized ultrasound imaging systems.","PeriodicalId":446,"journal":{"name":"IEEE Open Journal of Nanotechnology","volume":"5 ","pages":"107-115"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信